版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年山东省济南市普通高校对口单招高等数学一自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.级数()。A.绝对收敛B.条件收敛C.发散D.收敛性与k有关
3.二元函数z=x3-y3+3x2+3y2-9x的极小值点为()
A.(1,0)B.(1,2)C.(-3,0)D.(-3,2)
4.A.0B.2C.2f(-1)D.2f(1)
5.下列关于动载荷的叙述不正确的一项是()。
A.动载荷和静载荷的本质区别是前者构件内各点的加速度必须考虑,而后者可忽略不计
B.匀速直线运动时的动荷因数为
C.自由落体冲击时的动荷因数为
D.增大静变形是减小冲击载荷的主要途径
6.
7.设y1,y2为二阶线性常系数微分方程y"+p1y+p2y=0的两个特解,则C1y1+C2y2()A.为所给方程的解,但不是通解B.为所给方程的解,但不一定是通解C.为所给方程的通解D.不为所给方程的解
8.曲线的水平渐近线的方程是()
A.y=2B.y=-2C.y=1D.y=-1
9.()工作是对决策工作在时间和空间两个纬度上进一步的展开和细化。
A.计划B.组织C.控制D.领导
10.如图所示,在半径为R的铁环上套一小环M,杆AB穿过小环M并匀速绕A点转动,已知转角φ=ωt(其中ω为一常数,φ的单位为rad,t的单位为s),开始时AB杆处于水平位置,则当小环M运动到图示位置时(以MO为坐标原点,小环Md运动方程为正方向建立自然坐标轴),下面说法不正确的一项是()。
A.小环M的运动方程为s=2Rωt
B.小环M的速度为
C.小环M的切向加速度为0
D.小环M的法向加速度为2Rω2
11.
A.必定存在且值为0B.必定存在且值可能为0C.必定存在且值一定不为0D.可能不存在
12.
13.曲线y=x-ex在点(0,-1)处切线的斜率k=A.A.2B.1C.0D.-1
14.()。A.收敛且和为0
B.收敛且和为α
C.收敛且和为α-α1
D.发散
15.A.A.2B.-1/2C.1/2eD.(1/2)e1/2
16.
17.
18.平面π1:x-2y+3z+1=0,π2:2x+y+2=0的位置关系为().A.A.垂直B.斜交C.平行D.重合
19.微分方程y''-7y'+12y=0的通解为()A.y=C1e3x+C2e-4x
B.y=C1e-3x+C2e4x
C.y=C1e3x+C2e4x
D.y=C1e-3x+C2e-4x
20.
二、填空题(20题)21.
22.
23.
24.函数x=ln(1+x2-y2)的全微分dz=_________.
25.广义积分.
26.当x=1时,f(x)=x3+3px+q取到极值(其中q为任意常数),则p=______.
27.
28.函数f(x)=ex,g(x)=sinx,则f[g(x)]=__________。
29.设y=-lnx/x,则dy=_________。
30.
31.
32.
33.曲线y=x3-3x2-x的拐点坐标为____。
34.
35.
36.
37.
38.________.
39.y″+5y′=0的特征方程为——.
40.
三、计算题(20题)41.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
42.
43.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
44.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
45.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
46.求曲线在点(1,3)处的切线方程.
47.证明:
48.
49.
50.求微分方程y"-4y'+4y=e-2x的通解.
51.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
52.
53.
54.
55.求微分方程的通解.
56.当x一0时f(x)与sin2x是等价无穷小量,则
57.求函数f(x)=x3-3x+1的单调区间和极值.
58.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
59.将f(x)=e-2X展开为x的幂级数.
60.
四、解答题(10题)61.
62.
63.
64.
65.
66.
67.
68.设平面薄片的方程可以表示为x2+y2≤R2,x≥0,薄片上点(x,y)处的密度,求该薄片的质量M.
69.设z=z(x,y)由方程ez-xy2+x+z=0确定,求dz.
70.
五、高等数学(0题)71.y=ze-x在[0,2]上的最大值=__________,最小值=________。
六、解答题(0题)72.
参考答案
1.D
2.A本题考查的知识点为级数的绝对收敛与条件收敛。
由于的p级数,可知为收敛级数。
可知收敛,所给级数绝对收敛,故应选A。
3.A对于点(-3,0),A=-18+6=-12,B=0,C=6,B2-AC=72>0,故此点为非极值点.对于点(-3,2),A=-12,B=0,C=-12+6=-6,B2-AC=-72<0,故此点为极大值点.对于点(1,0),A=12,B=0,C=6,B2-AC=-72<0,故此点为极小值点.对于点(1,2),A=12=0,C=-6,B2-AC=72>0,故此点为非极值点.
4.C本题考查了定积分的性质的知识点。
5.C
6.C
7.B如果y1,y2这两个特解是线性无关的,即≠C,则C1y1+C2y2是其方程的通解。现在题设中没有指出是否线性无关,所以可能是通解,也可能不是通解,故选B。
8.D
9.A解析:计划工作是对决策工作在时间和空间两个纬度上进一步的展开和细分。
10.D
11.B
12.B
13.C
14.C
15.B
16.A
17.A
18.A本题考查的知识点为两平面的关系.
两平面的关系可由两平面的法向量n1,n2间的关系确定.
19.C因方程:y''-7y'+12y=0的特征方程为r2-7r+12=0,于是有特征根r1=3,r2=4,故微分方程的通解为:y=C1e3x+C2e4x
20.C解析:
21.
解析:
22.
23.2/3
24.
25.1本题考查的知识点为广义积分,应依广义积分定义求解.
26.-1f'(x)=3x2+3p,f'(1)=3十3p=0,所以p=-1.
27.
28.由f(x)=exg(x)=sinx;∴f[g(x)]=f[sinx]=esinx
29.
30.
本题考查的知识点为初等函数的求导运算.
本题需利用导数的四则运算法则求解.
本题中常见的错误有
这是由于误将sin2认作sinx,事实上sin2为-个常数,而常数的导数为0,即
请考生注意,不论以什么函数形式出现,只要是常数,它的导数必定为0.
31.ex2
32.1
33.(1,-1)
34.
35.(-∞.2)
36.11解析:
37.x+2y-z-2=0
38.
39.由特征方程的定义可知,所给方程的特征方程为
40.x
41.
42.
43.由二重积分物理意义知
44.
列表:
说明
45.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
46.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
47.
48.
49.
50.解:原方程对应的齐次方程为y"-4y'+4y=0,
51.
52.
53.
54.
则
55.
56.由等价无穷小量的定义可知
57.函数的定义域为
注意
58.
59.
60.由一阶线性微分方程通解公式有
61.
62.
63.
64.
65.
66.
67.
68.本题考查的知识点为二重积分的物理应用.
若已知平面物质薄片D,其密度为f(x,y)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋维修合同范本(6篇)
- 某学校外墙装饰改造施工组织设计
- 石河子大学《网络安全技术及应用》2023-2024学年期末试卷
- 石河子大学《软件体系结构》2021-2022学年期末试卷
- 石河子大学《电工学实验》2021-2022学年期末试卷
- 沈阳理工大学《现代控制理论》2023-2024学年期末试卷
- 沈阳理工大学《汽车制造工艺学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《计算机网络》2022-2023学年期末试卷
- 肝癌靶向联合免疫治疗
- 沈阳理工大学《功能高分子》2023-2024学年第一学期期末试卷
- 头痛的诊治策略讲课课件
- 沙利文-内窥镜行业现状与发展趋势蓝皮书
- 国家开放大学一网一平台电大《建筑测量》实验报告1-5题库
- 规范诊疗服务行为专项整治行动自查表
- (新平台)国家开放大学《建设法规》形考任务1-4参考答案
- 精益工厂布局及精益物流规划课件
- 注射液无菌检查的方法学验证方案
- 2023年口腔医学期末复习-牙周病学(口腔医学)考试历年真题荟萃带答案
- 复合风管制作工艺
- 多元智能测试题及多元智能测试量表
- 完整版平安基础性向测试智商测试题及问题详解
评论
0/150
提交评论