陕西省西安市第四十六中学2024年高二上数学期末调研试题含解析_第1页
陕西省西安市第四十六中学2024年高二上数学期末调研试题含解析_第2页
陕西省西安市第四十六中学2024年高二上数学期末调研试题含解析_第3页
陕西省西安市第四十六中学2024年高二上数学期末调研试题含解析_第4页
陕西省西安市第四十六中学2024年高二上数学期末调研试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市第四十六中学2024年高二上数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等比数列,且,则()A.16 B.32C.24 D.642.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.3.设函数,当自变量t由2变到2.5时,函数的平均变化率是()A.5.25 B.10.5C.5.5 D.114.设,若,则()A. B.C. D.5.下列结论中正确的有()A.若,则 B.若,则C.若,则 D.若,则6.已知四棱锥,平面PAB,平面PAB,底面ABCD是梯形,,,,满足上述条件的四棱锥的顶点P的轨迹是()A.椭圆 B.椭圆的一部分C.圆 D.不完整的圆7.若a,b,c为实数,且,则以下不等式成立的是()A. B.C. D.8.已知三棱柱的所有棱长均为2,平面,则异面直线,所成角的余弦值为()A. B.C. D.9.已知分别是双曲线的左、右焦点,动点P在双曲线的左支上,点Q为圆上一动点,则的最小值为()A.6 B.7C. D.510.直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A. B.C. D.11.已知实数,满足不等式组,则的最小值为()A2 B.3C.4 D.512.和的等差中项与等比中项分别为()A., B.2,C., D.1,二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,,,则数列中最大项的数值为__________14.设等差数列,前项和分别为,,若对任意自然数都有,则的值为______.15.若抛物线:上的一点到它的焦点的距离为3,则__.16.如图:二面角等于,是棱上两点,分别在半平面内,,则的长等于__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为直角梯形,底面分别为的中点,(1)求证:平面平面;(2)求二面角的大小18.(12分)如图,在三棱锥中,,,为的中点.(1)求证:平面;(2)若点在棱上,且,求点到平面的距离.19.(12分)已知是抛物线的焦点,直线交拋物线于、两点.(1)若直线过点且,求;(2)若平分线段,求直线的方程.20.(12分)已知抛物线的焦点在直线上(1)求抛物线的方程(2)设直线经过点,且与抛物线有且只有一个公共点,求直线的方程21.(12分)如图,在长方体中,,,,M为上一点,且(1)求点到平面的距离;(2)求二面角的余弦值22.(10分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求点到平面的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】由等比数列的定义先求出公比,然后可解..【题目详解】,得故选:A2、A【解题分析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【题目详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A3、B【解题分析】利用平均变化率的公式即得.【题目详解】∵,∴.故选:B.4、B【解题分析】先求出,再利用二倍角公式、和差角公式即可求解.【题目详解】因为,且,所以.所以,,所以.故选:B5、D【解题分析】根据基本初等函数的导数和运算法则分别计算函数的导数,即可判断选项.【题目详解】A.若,则,故A错误;B.若,则,故B错误;C.若,则,故C错误;D.若,则,故D正确.故选:D6、D【解题分析】根据题意,分析得动点满足的条件,结合圆以及椭圆的方程,以及点的限制条件,即可判断轨迹.【题目详解】因为平面PAB,平面PAB,则//,又面面,故可得;因为,故可得,则,综上所述:动点在垂直的平面中,且满足;为方便研究,不妨建立平面直角坐标系进行说明,在平面中,因为,以中点为坐标原点,以为轴,过且垂直于的直线为轴建立平面直角坐标系,如下所示:因为,故可得,整理得:,故动点的轨迹是一个圆;又当三点共线时,几何体不是空间几何体,故动点的轨迹是一个不完整的圆.故选:.【题目点拨】本题考察立体几何中动点的轨迹问题,处理的关键是利用立体几何知识,找到动点满足的条件,进而求解轨迹.7、C【解题分析】利用不等式的性质直接推导和取值验证相结合可解.【题目详解】取可排除ABD;由不等式的性质易得C正确.故选:C8、A【解题分析】建立空间直角坐标系,利用向量法求解【题目详解】以为坐标原点,平面内过点且垂直于的直线为轴,所在直线为轴,所在直线为轴建立空间直角坐标系,如图所示,则,,,,∴,,∴,∴异面直线,所成角的余弦值为.故选:A9、A【解题分析】由双曲线的定义及三角形的几何性质可求解.【题目详解】如图,圆的圆心为,半径为1,,,当,,三点共线时,最小,最小值为,而,所以故选:A10、A【解题分析】设点与的坐标,进而可表示与,再结合两点在椭圆上,可得的值.【题目详解】设点与,则,,所以,,又点与在椭圆上,所以,,作差可得,即,所以,故选:A.11、B【解题分析】画出可行域,找到最优解,得最值.【题目详解】画出不等式组对应的可行域如下:平行移动直线,当直线过点时,.故选:B.12、C【解题分析】根据等差中项和等比中项的概念分别求值即可.【题目详解】和的等差中项为,和的等比中项为.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】用累加法求出通项,再由通项表达式确定最大项.【题目详解】当时,,所以数列中最大项的数值为故答案为:14、【解题分析】由等差数列的性质可得:.再利用已知即可得出【题目详解】由等差数列的性质可得:对于任意的都有,则故答案为:【题目点拨】本题考查了等差数列的性质,求和公式,考查了推理能力与计算能力,属于中档题15、【解题分析】通过抛物线的定义列式求解【题目详解】根据抛物线的定义知,所以.故答案为:16、【解题分析】由题意,二面角等于,根据,结合向量的运算,即可求解.【题目详解】由题意,二面角等于,可得向量,,因为,可得,所以.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解题分析】(1)依题意可得平行四边形是矩形,即可得到,再由及面面垂直的性质定理得到平面,从而得到,即可得到平面,从而得证;(2)建立空间直角坐标系,利用空间向量法求出二面角的余弦值,即可得解;【小问1详解】证明:因为为的中点,,所以,又,所以四边形为平行四边形,因为,所以平行四边形是矩形,所以,因为,所以,又因为平面平面,平面平面面,所以平面,因为面,所以,又因为,平面,所以平面,因为平面,所以平面平面;【小问2详解】解:由(1)可得:两两垂直,如图,分别以所在的直线为轴建立空间直角坐标系,则则,设平面的一个法向量,由则,令,则,所以,设平面的一个法向量,所以,根据图像可知二面角为锐二面角,所以二面角的大小为;18、(1)证明见解析;(2)【解题分析】(1)易得,再由勾股定理逆定理证明,即可得线面垂直;(2)根据(1)得,进而根据几何关系,利用等体积法求解即可.【题目详解】解:(1)连接,∵,是中点,∴,,又,,∴,∴,∵,∴,∴,,平面,∴平面;(2)∵点在棱上,且,,为的中点.∴,∴由余弦定理得,即,∴,由(1)平面,设点到平面的距离为∴,即,解得:所以点到平面的距离为.19、(1);(2).【解题分析】(1)分析可知直线的方程为,将直线的方程与抛物线方程联立,求出点的坐标,利用抛物线的定义可求得;(2)利用点差法可求得直线的斜率,利用点斜式可得出直线的方程.【小问1详解】解:设点、,则直线的倾斜角为,易知点,直线的方程为,联立,可得,由题意可知,则,,因此,.【小问2详解】解:设、,若轴,则线段的中点在轴上,不合乎题意,所以直线的斜率存在,因为、在抛物线上,则,两式相减得,又因为为的中点,则,所以,直线的斜率为,此时,直线的方程为,即.20、(1)(2)的方程为、、【解题分析】(1)求得点的坐标,由此求得,进而求得抛物线的方程.(2)结合图象以及判别式求得直线的方程.【小问1详解】抛物线的焦点在轴上,且开口向上,直线与轴的交点为,则,所以,抛物线的方程为.【小问2详解】当直线的斜率不存在时,直线与抛物线只有一个公共点.那个直线的斜率存在时,设直线的方程为,,,,解得或.所以直线的方程为或.综上所述,的方程为、、.21、(1)(2)【解题分析】(1)以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,利用空间向量求解,(2)求出和的法向量,利用空间向量求解【小问1详解】以A为原点,以AB、AD、所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系由,,,,所以,,,因此,,,设平面的法向量,则,,所以,取,则,,于是,所以点到平面的距离【小问2详解】由,,设平面的法向量,则,,所以,取,则,,于是,由(1)知平面的法向量为,记二面角的平面角为,则,由图可知二面角为锐角,所以所求二面角的余弦值为22、(1)略;(2)【解题分析】(1)推导出BD⊥BC,PB⊥BC,从而BC⊥平面PBD,由此能证明PD⊥BC.(2)利用等体积求得点B到面的距离【题目详解】(1)∵在四棱锥P﹣ABCD中,四边形

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论