2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题含解析_第1页
2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题含解析_第2页
2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题含解析_第3页
2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题含解析_第4页
2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024学年山西省运城市临猗县临晋中学高二上数学期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“”是直线与直线平行的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.已知A,B,C三点不共线,O是平面ABC外一点,下列条件中能确定点M与点A,B,C一定共面的是A. B.C. D.3.在直角坐标系中,直线的倾斜角是A.30° B.60°C.120° D.150°4.曲线与曲线()的()A.长轴长相等 B.短轴长相等C.离心率相等 D.焦距相等5.若某群体中的成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.6.下面三种说法中,正确说法的个数为()①如果两个平面有三个公共点,那么这两个平面重合;②两条直线可以确定一个平面;③若,,,则A.1 B.2C.3 D.07.已知是椭圆两个焦点,P在椭圆上,,且当时,的面积最大,则椭圆的标准方程为()A. B.C. D.8.在平行六面体ABCD﹣A1B1C1D1中,AC与BD的交点为M,设=,=,=,则=()A.++ B.+C.++ D.+9.已知的周长等于10,,通过建立适当的平面直角坐标系,顶点的轨迹方程可以是()A. B.C. D.10.已知随机变量服从正态分布,,则()A. B.C. D.11.函数的导函数为,若已知图象如图,则下列说法正确的是()A.存在极大值点 B.在单调递增C.一定有最小值 D.不等式一定有解12.已知数列的前n项和为,则“数列是等比数列”为“存在,使得”的()A.既不充分也不必要条件 B.必要不充分条件C.充要条件 D.充分不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.已知5件产品中有2件次品、3件合格品,从这5件产品中任取2件,求2件都是合格品的概率_______.14.若,m,三个数成等差数列,则圆锥曲线的离心率为______15.椭圆C:的左、右焦点分别为,,P为椭圆上异于左右顶点的任意一点,、的中点分别为M、N,O为坐标原点,四边形OMPN的周长为4,则的周长是_____16.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,讨论的单调性;(2)当时,,求a的取值范围.18.(12分)已知三棱柱中,,,平面ABC,,E为AB中点,D为上一点(1)求证:;(2)当D为中点时,求平面ADC与平面所成角的正弦值19.(12分)某中学共有名学生,其中高一年级有名学生,为了解学生的睡眠情况,用分层抽样的方法,在三个年级中抽取了名学生,依据每名学生的睡眠时间(单位:小时),绘制出了如图所示的频率分布直方图.(1)求样本中高一年级学生人数及图中的值;(2)估计样本数据的中位数(保留两位小数);(3)估计全校睡眠时间超过个小时的学生人数.20.(12分)已知数列的前项和满足(1)证明:数列为等比数列;(2)若数列为等差数列,且,,求数列的前项和21.(12分)已知平面内两点,,动点P满足(1)求动点P的轨迹方程;(2)过定点的直线l交动点P的轨迹于不同的两点M,N,点M关于y轴对称点为,求证直线过定点,并求出定点坐标22.(10分)如图,四边形ABCD是正方形,四边形BEDF是菱形,平面平面.(1)证明:;(2)若,且平面平面BEDF,求平面ADE与平面CDF所成的二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】先根据直线平行的充要条件求出a,然后可得.【题目详解】若,则,,显然平行;若直线,则且,即.故“”是直线与直线平行的充要条件.故选:C2、D【解题分析】首先利用坐标法,排除错误选项,然后对符合的选项验证存在使得,由此得出正确选项.【题目详解】不妨设.对于A选项,,由于的竖坐标,故不在平面上,故A选项错误.对于B选项,,由于的竖坐标,故不在平面上,故B选项错误.对于C选项,,由于的竖坐标,故不在平面上,故C选项错误.对于D选项,,由于的竖坐标为,故在平面上,也即四点共面.下面证明结论一定成立:由,得,即,故存在,使得成立,也即四点共面.故选:D.【题目点拨】本小题主要考查空间四点共面的证明方法,考查空间向量的线性运算,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.3、D【解题分析】根据直线方程得到直线的斜率后可得直线的倾斜角.【题目详解】设直线的倾斜角为,则,因,故,故选D.【题目点拨】直线的斜率与倾斜角的关系是:,当时,直线的斜率不存在,注意倾斜角的范围.4、D【解题分析】分别求出两椭圆的长轴长、短轴长、离心率、焦距,即可判断.【题目详解】曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为;曲线表示焦点在轴上,长轴长为,短轴长为,离心率为,焦距为.对照选项可知:焦距相等.故选:D.5、A【解题分析】利用对立事件概率公式可求得所求事件的概率.【题目详解】由对立事件的概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.6、A【解题分析】对于①,有两种情况,对于②考虑异面直线,对于③根据线面公理可判断.【题目详解】如果两个平面有三个公共点,那么这两个平面重合或者是相交,故①不正确;两条异面直线不能确定一个平面,故②不正确;若,,,可知必在交线上,则,故③正确;综上所述只有一个说法是正确的.故选:A7、A【解题分析】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,即可解出【题目详解】由题意知c=3,当△F1PF2的面积最大时,点P与椭圆在y轴上的顶点重合,∵时,△F1PF2的面积最大,∴a==,b=∴椭圆的标准方程为故选:A8、B【解题分析】利用向量三角形法则、平行四边形法则、向量共线定理即可得出【题目详解】如图所示,∵=+,又=,=-,=,∴=+,故选:B9、A【解题分析】根据椭圆的定义进行求解即可.【题目详解】因为的周长等于10,,所以,因此点的轨迹是以为焦点的椭圆,且不在直线上,因此有,所以顶点的轨迹方程可以是,故选:A10、B【解题分析】直接利用正态分布的应用和密度曲线的对称性的应用求出结果【题目详解】根据随机变量服从正态分布,所以密度曲线关于直线对称,由于,所以,所以,则,所以故选:B.【题目点拨】本题考查的知识要点:正态分布的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题11、C【解题分析】根据图象可得的符号,从而可得的单调区间,再对选项进行逐一分析判断正误得出答案.【题目详解】由所给的图象,可得当时,,当时,,当时,,当时,,可得在递减,递增;在递减,在递增,B错误,且知,所以存在极小值和,无极大值,A错误,同时无论是否存在,可得出一定有最小值,但是最小值不一定为负数,故C正确,D错误.故选:C.12、D【解题分析】由充分必要条件的定义,结合等比数列的通项公式和求和公式,以及利用特殊数列的分法,即可求解.【题目详解】由题意,数列是等比数列,设等比数列的公比为,则,所以存在,使得,即充分性成立;若存在,使得,可取,即,可得,当,可得,此时数列不是等比数列,即必要性不成立,所以数列是等比数列为存在,使得的充分不必要条件.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、##【解题分析】列举总的基本事件及满足题目要求的基本事件,然后用古典概型的概率公式求解即可.【题目详解】设5件产品中的次品为,合格品为,则从这5件产品中任取2件,有共10个基本事件,其中2件都是合格品的有共3个基本事件,故2件都是合格品的概率为故答案为:.14、【解题分析】由等差中项的性质求参数m,即可得曲线标准方程,进而求其离心率.【题目详解】由题意,,可得,所以圆锥曲线为,则,,故.故答案为:.15、【解题分析】先证明则四边形OMPN是平行四边形,进而根据椭圆定义求出a,再求出c,最后求出答案.【题目详解】因为M,O,N分别为的中点,所以,则四边形OMPN是平行四边形,所以,由四边形OMPN的周长为4可知,,即,则,于是的周长是.故答案为:.16、m≥6【解题分析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【题目详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【题目点拨】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)在上单调递减,在上单调递增(2)【解题分析】(1)研究当时的导数的符号即可讨论得到的单调性;(2)对原函数求导,对a的范围分类讨论即可得出答案.【小问1详解】当时,,令,则,所以在上单调递增.又因为,所以当时,,当时,,所以在上单调递减,在上单调递增.【小问2详解】,且.①当时,由(1)可知当时,所以在上单调递增,则,符合题意.②当时,,不符合题意,舍去.③当时,令,则,则,,当时,,所以在上单调递减,当时,,不符合题意,舍去.综上,a的取值范围为.【题目点拨】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用18、(1)证明见解析;(2).【解题分析】(1)利用线面垂直的性质定理及线面垂直的判定定理即证;(2)利用坐标法即求.【小问1详解】∵,E为AB中点,∴,∵平面ABC,平面ABC,∴,又,,∴平面,平面,∴;【小问2详解】以C点为坐标原点,CA,CB,分别为x,y,z轴建立空间直角坐标系,不妨设,则平面的法向量为,设平面ADC法向量为,则,∴,即,令,则∴平面ADC与平面所成角的余弦值为,所以平面ADC与平面所成角的正弦值.19、(1)样本中高一年级学生的人数为,;(2);(3).【解题分析】(1)利用分层抽样可求得样本中高一年级学生的人数,利用频率直方图中所有矩形的面积之和为可求得的值;(2)利用中位数左边的矩形面积之和为可求得中位数的值;(3)利用频率分布直方图可计算出全校睡眠时间超过个小时的学生人数.【小问1详解】解:样本中高一年级学生的人数为.,解得.【小问2详解】解:设中位数为,前两个矩形的面积之和为,前三个矩形的面积之和为,所以,则,得,故样本数据的中位数约为.【小问3详解】解:由图可知,样本数据落在的频率为,故全校睡眠时间超过个小时的学生人数约为.20、(1)证明见解析(2)【解题分析】(1)由与的关系,利用等比数列的定义证明即可;(2)由(1)求出,再利用裂项相消法求解即可【小问1详解】当时,,,当时,,,,数列是以为首项、以为公比的等比数列【小问2详解】由(1)得,,即,,设等差数列的公差为,则,,,,,21、(1)(2)证明见解析,定点坐标为【解题分析】(1)直接由斜率关系计算得到;(2)设出直线,联立椭圆方程,韦达定理求出,再结合三点共线,求出参数,得到过定点.小问1详解】设动点,由已知有,整理得,所以动点的轨迹方程为;【小问2详解】由已知条件可知直线和直线斜率一定存在,设直线方程为,,,则,由,可得,则,即为,,,因为直线过定点,所以三点共线,即,即,即,即,即得,整理,得,满足,则直线方程为,恒过定点.【题目点拨】本题关键在于设出带有两个参数的直线的方程,联立椭圆方程后,利用题干中的条件,解出一个参数或得到两个参数之间的关系,即可求出定点.2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论