版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年宁夏回族自治区中卫市普通高校对口单招高等数学一自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.A.3B.2C.1D.1/2
2.函数z=x2-xy+y2+9x-6y+20有()
A.极大值f(4,1)=63B.极大值f(0,0)=20C.极大值f(-4,1)=-1D.极小值f(-4,1)=-1
3.谈判是双方或多方为实现某种目标就有关条件()的过程。
A.达成协议B.争取利益C.避免冲突D.不断协商
4.
5.在初始发展阶段,国际化经营的主要方式是()
A.直接投资B.进出口贸易C.间接投资D.跨国投资
6.设二元函数z=xy,则点P0(0,0)A.为z的驻点,但不为极值点B.为z的驻点,且为极大值点C.为z的驻点,且为极小值点D.不为z的驻点,也不为极值点
7.A.A.
B.
C.
D.
8.
A.f(x)-f(a)B.f(a)-f(x)C.f(x)D.f(a)
9.微分方程(y)2=x的阶数为()A.1B.2C.3D.4
10.设f'(x)=1+x,则f(x)等于().A.A.1
B.X+X2+C
C.x++C
D.2x+x2+C
11.A.A.2B.1C.1/2D.0
12.A.
B.
C.
D.
13.
14.
15.
16.二次积分等于()A.A.
B.
C.
D.
17.设y=2x3,则dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
18.
19.
20.设lnx是f(x)的一个原函数,则f'(x)=A.-1/x
B.1/x
C.-1/x2
D.1/x2
二、填空题(20题)21.设.y=e-3x,则y'________。
22.
23.
24.
25.
26.设y=sin(2+x),则dy=.
27.设函数y=x2lnx,则y=__________.
28.
29.设f(x,y)=sin(xy2),则df(x,y)=______.
30.
31.
32.设区域D:x2+y2≤a2(a>0),y≥0,则化为极坐标系下的表达式为______.
33.
34.
35.
36.
37.二元函数z=x2+3xy+y2+2x,则=______.
38.
39.
40.
三、计算题(20题)41.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
42.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
43.
44.将f(x)=e-2X展开为x的幂级数.
45.
46.证明:
47.求微分方程y"-4y'+4y=e-2x的通解.
48.求微分方程的通解.
49.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
50.
51.
52.
53.求函数f(x)=x3-3x+1的单调区间和极值.
54.当x一0时f(x)与sin2x是等价无穷小量,则
55.
56.求曲线在点(1,3)处的切线方程.
57.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
58.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
59.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
60.
四、解答题(10题)61.设有一圆形薄片x2+y2≤α2,在其上一点M(x,y)的面密度与点M到点(0,0)的距离成正比,求分布在此薄片上的物质的质量。
62.求由曲线y=2-x2,y=2x-1及x≥0围成的平面图形的面积S,以及此平面图形绕x轴旋转所成旋转体的体积.
63.
64.
65.设区域D为:
66.
67.在曲线y=x2(x≥0)上某点A(a,a2)处作切线,使该切线与曲线及x轴所围成的图形的面积为1/12.试求:(1)切点A的坐标((a,a2).(2)过切点A的切线方程.
68.函数y=y(x)由方程ey=sin(x+y)确定,求dy.
69.
70.
五、高等数学(0题)71.当x>0时,曲线
()。
A.没有水平渐近线B.仅有水平渐近线C.仅有铅直渐近线D.有水平渐近线,又有铅直渐近线
六、解答题(0题)72.
参考答案
1.B,可知应选B。
2.D
3.A解析:谈判是指双方或多方为实现某种目标就有关条件达成协议的过程。
4.D解析:
5.B解析:在初始投资阶段,企业从事国际化经营活动的主要特点是活动方式主要以进出口贸易为主。
6.A
7.B本题考查的知识点为可导性的定义.当f(x)在x=1处可导时,由导数定义可得
8.C
本题考查的知识点为可变限积分求导.
9.A
10.C本题考查的知识点为不定积分的性质.
可知应选C.
11.D
12.A本题考查的知识点为偏导数的计算。由于故知应选A。
13.B
14.B
15.A
16.A本题考查的知识点为交换二次积分的积分次序.
由所给二次积分限可知积分区域D的不等式表达式为:
0≤x≤1,0≤y≤1-x,
其图形如图1-1所示.
交换积分次序,D可以表示为
0≤y≤1,0≤x≤1-y,
因此
可知应选A.
17.B由微分基本公式及四则运算法则可求得.也可以利用dy=y′dx求得故选B.
18.A
19.C
20.C
21.-3e-3x
22.
本题考查的知识点为幂级数的收敛半径.
注意此处幂级数为缺项情形.
23.
24.
解析:
25.3
26.cos(2+x)dx
这类问题通常有两种解法.
解法1
因此dy=cos(2+x)dx.
解法2利用微分运算公式
dy=d(sin(2+x))=cos(2+x)·d(2+x)=cos(2+x)dx.
27.
28.dx
29.y2cos(xy2)dx+2xycos(xy2)dydf(x,y)=cos(xy2)d(xy2)=cos(xy2)(y2dx+2xydy)=y2cos(xy2)dx+2xycos(xy2)dy也可先求出,而得出df(x,y).
30.
31.2/3
32.
;本题考查的知识点为二重积分的直角坐标与极坐标转化问题.
由于x2+y2≤a2,y>0可以表示为
0≤θ≤π,0≤r≤a,
因此
33.e2
34.0
35.
解析:
36.-sinx
37.2x+3y+2本题考查的知识点为二元函数的偏导数运算.
则
38.
39.y=1
40.
41.
42.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
43.
则
44.
45.由一阶线性微分方程通解公式有
46.
47.解:原方程对应的齐次方程为y"-4y'+4y=0,
48.
49.
列表:
说明
50.
51.
52.
53.函数的定义域为
注意
54.由等价无穷小量的定义可知
55.
56.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
57.
58.由二重积分物理意义知
59.
60.
61.
62.如图10-2所示.本题考查的知识点为利用定积分求平面图形的面积;利用定积分求旋转体体积.
需注意的是所给平面图形一部分位于x轴上方,而另一部分位于x轴下方.而位于x轴下方的图形绕x轴旋转一周所成的旋转体包含于x轴上方的图形绕x轴旋转一周所成的旋转体之中,因此只需求出x轴上方图形绕x轴旋转所成旋转体的体积,即为所求旋转体体积.
63.
64.
65.利用极坐标,区域D可以表示为0≤θ≤π,0≤r≤2本题考查的知识点为二重积分的计算(极坐标系).
如果积分区域为圆域或圆的一部分,被积函数为f(x2+y2)的二重积分,通常利用极坐标计算较方便.
使用极坐标计算二重积分时,要先将区域D的边界曲线化为极坐标下的方程表示,以确定出区域D的不等式表示式,再将积分化为二次积分.
本题考生中常见的错误为:
被积函数中丢掉了r.这是将直角坐标系下的二重积分化为极坐标下的二次积分时常见的错误,考生务必要注意.
66.
67.由于y=x2,则y'=2x,曲线y=x2上过点A(a,a2)的切线方程为y-a2=2a(x-a),即y=2ax-a2,曲线y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论