2025届河北省郑口中学高考冲刺数学模拟试题含解析_第1页
2025届河北省郑口中学高考冲刺数学模拟试题含解析_第2页
2025届河北省郑口中学高考冲刺数学模拟试题含解析_第3页
2025届河北省郑口中学高考冲刺数学模拟试题含解析_第4页
2025届河北省郑口中学高考冲刺数学模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省郑口中学高考冲刺数学模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知抛物线:,直线与分别相交于点,与的准线相交于点,若,则()A.3 B. C. D.2.某四棱锥的三视图如图所示,记为此棱锥所有棱的长度的集合,则().A.,且 B.,且C.,且 D.,且3.定义,已知函数,,则函数的最小值为()A. B. C. D.4.已知双曲线的一条渐近线倾斜角为,则()A.3 B. C. D.5.执行如图所示的程序框图,如果输入,则输出属于()A. B. C. D.6.已知函数,,若成立,则的最小值是()A. B. C. D.7.已知圆与抛物线的准线相切,则的值为()A.1 B.2 C. D.48.在复平面内,复数(为虚数单位)的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.下列说法正确的是()A.命题“,”的否定形式是“,”B.若平面,,,满足,则C.随机变量服从正态分布(),若,则D.设是实数,“”是“”的充分不必要条件10.已知集合,,则集合的真子集的个数是()A.8 B.7 C.4 D.311.已知为圆:上任意一点,,若线段的垂直平分线交直线于点,则点的轨迹方程为()A. B.C.() D.()12.已知是虚数单位,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数,若存在实数m,使得关于x的方程有4个不相等的实根,且这4个根的平方和存在最小值,则实数a的取值范围是______.14.在平面直角坐标系中,双曲线的右准线与渐近线的交点在抛物线上,则实数的值为________.15.在四棱锥中,是边长为的正三角形,为矩形,,.若四棱锥的顶点均在球的球面上,则球的表面积为_____.16.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是_____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,角所对边的长分别为,且(1)求角的大小;(2)求的值.18.(12分)已知函数.(Ⅰ)求函数的单调区间;(Ⅱ)当时,求函数在上最小值.19.(12分)如图,四棱锥中,底面是菱形,对角线交于点为棱的中点,.求证:(1)平面;(2)平面平面.20.(12分)2019年6月,国内的运营牌照开始发放.从到,我们国家的移动通信业务用了不到20年的时间,完成了技术上的飞跃,跻身世界先进水平.为了解高校学生对的消费意愿,2019年8月,从某地在校大学生中随机抽取了1000人进行调查,样本中各类用户分布情况如下:用户分类预计升级到的时段人数早期体验用户2019年8月至2019年12月270人中期跟随用户2020年1月至2021年12月530人后期用户2022年1月及以后200人我们将大学生升级时间的早晚与大学生愿意为套餐支付更多的费用作比较,可得出下图的关系(例如早期体验用户中愿意为套餐多支付5元的人数占所有早期体验用户的).(1)从该地高校大学生中随机抽取1人,估计该学生愿意在2021年或2021年之前升级到的概率;(2)从样本的早期体验用户和中期跟随用户中各随机抽取1人,以表示这2人中愿意为升级多支付10元或10元以上的人数,求的分布列和数学期望;(3)2019年底,从这1000人的样本中随机抽取3人,这三位学生都已签约套餐,能否认为样本中早期体验用户的人数有变化?说明理由.21.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.22.(10分)已知函数.(1)证明:当时,;(2)若函数只有一个零点,求正实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

根据抛物线的定义以及三角形的中位线,斜率的定义表示即可求得答案.【详解】显然直线过抛物线的焦点如图,过A,M作准线的垂直,垂足分别为C,D,过M作AC的垂线,垂足为E根据抛物线的定义可知MD=MF,AC=AF,又AM=MN,所以M为AN的中点,所以MD为三角形NAC的中位线,故MD=CE=EA=AC设MF=t,则MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故选:C【点睛】本题考查求抛物线的焦点弦的斜率,常见于利用抛物线的定义构建关系,属于中档题.2、D【解析】

首先把三视图转换为几何体,根据三视图的长度,进一步求出个各棱长.【详解】根据几何体的三视图转换为几何体为:该几何体为四棱锥体,如图所示:所以:,,.故选:D..【点睛】本题考查三视图和几何体之间的转换,主要考查运算能力和转换能力及思维能力,属于基础题.3、A【解析】

根据分段函数的定义得,,则,再根据基本不等式构造出相应的所需的形式,可求得函数的最小值.【详解】依题意得,,则,(当且仅当,即时“”成立.此时,,,的最小值为,故选:A.【点睛】本题考查求分段函数的最值,关键在于根据分段函数的定义得出,再由基本不等式求得最值,属于中档题.4、D【解析】

由双曲线方程可得渐近线方程,根据倾斜角可得渐近线斜率,由此构造方程求得结果.【详解】由双曲线方程可知:,渐近线方程为:,一条渐近线的倾斜角为,,解得:.故选:.【点睛】本题考查根据双曲线渐近线倾斜角求解参数值的问题,关键是明确直线倾斜角与斜率的关系;易错点是忽略方程表示双曲线对于的范围的要求.5、B【解析】

由题意,框图的作用是求分段函数的值域,求解即得解.【详解】由题意可知,框图的作用是求分段函数的值域,当;当综上:.故选:B【点睛】本题考查了条件分支的程序框图,考查了学生逻辑推理,分类讨论,数学运算的能力,属于基础题.6、A【解析】分析:设,则,把用表示,然后令,由导数求得的最小值.详解:设,则,,,∴,令,则,,∴是上的增函数,又,∴当时,,当时,,即在上单调递减,在上单调递增,是极小值也是最小值,,∴的最小值是.故选A.点睛:本题易错选B,利用导数法求函数的最值,解题时学生可能不会将其中求的最小值问题,通过构造新函数,转化为求函数的最小值问题,另外通过二次求导,确定函数的单调区间也很容易出错.7、B【解析】

因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于半径,可知的值为2,选B.【详解】请在此输入详解!8、D【解析】

将复数化简得,,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.9、D【解析】

由特称命题的否定是全称命题可判断选项A;可能相交,可判断B选项;利用正态分布的性质可判断选项C;或,利用集合间的包含关系可判断选项D.【详解】命题“,”的否定形式是“,”,故A错误;,,则可能相交,故B错误;若,则,所以,故,所以C错误;由,得或,故“”是“”的充分不必要条件,D正确.故选:D.【点睛】本题考查命题的真假判断,涉及到特称命题的否定、面面相关的命题、正态分布、充分条件与必要条件等,是一道容易题.10、D【解析】

转化条件得,利用元素个数为n的集合真子集个数为个即可得解.【详解】由题意得,,集合的真子集的个数为个.故选:D.【点睛】本题考查了集合的化简和运算,考查了集合真子集个数问题,属于基础题.11、B【解析】

如图所示:连接,根据垂直平分线知,,故轨迹为双曲线,计算得到答案.【详解】如图所示:连接,根据垂直平分线知,故,故轨迹为双曲线,,,,故,故轨迹方程为.故选:.【点睛】本题考查了轨迹方程,确定轨迹方程为双曲线是解题的关键.12、B【解析】

根据复数的乘法运算法则,直接计算,即可得出结果.【详解】.故选B【点睛】本题主要考查复数的乘法,熟记运算法则即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

先确定关于x的方程当a为何值时有4个不相等的实根,再将这四个根的平方和表示出来,利用函数思想来判断当a为何值时这4个根的平方和存在最小值即可.【详解】由题意,当时,,此时,此时函数在单调递减,在单调递增,方程最多2个不相等的实根,舍;当时,函数图象如下所示:从左到右方程,有4个不相等的实根,依次为,,,,即,由图可知,故,且,,从而,令,显然,,要使该式在时有最小值,则对称轴,解得.综上所述,实数a的取值范围是.【点睛】本题考查了函数和方程的知识,但需要一定的逻辑思维能力,属于较难题.14、【解析】

求出双曲线的右准线与渐近线的交点坐标,并将该交点代入抛物线的方程,即可求出实数的方程.【详解】双曲线的半焦距为,则双曲线的右准线方程为,渐近线方程为,所以,该双曲线右准线与渐近线的交点为.由题意得,解得.故答案为:.【点睛】本题考查利用抛物线上的点求参数,涉及到双曲线的准线与渐近线方程的应用,考查计算能力,属于中等题.15、【解析】

做中点,的中点,连接,由已知条件可求出,运用余弦定理可求,从而在平面中建立坐标系,则以及的外接圆圆心为和长方形的外接圆圆心为在该平面坐标系的坐标可求,通过球心满足,即可求出的坐标,从而可求球的半径,进而能求出球的表面积.【详解】解:如图做中点,的中点,连接,由题意知,则设的外接圆圆心为,则在直线上且设长方形的外接圆圆心为,则在上且.设外接球的球心为在中,由余弦定理可知,.在平面中,以为坐标原点,以所在直线为轴,以过点垂直于轴的直线为轴,如图建立坐标系,由题意知,在平面中且设,则,因为,所以解得.则所以球的表面积为.故答案为:.【点睛】本题考查了几何体外接球的问题,考查了球的表面积.关于几何体的外接球的做题思路有:一是通过将几何体补充到长方体中,将几何体的外接球等同于长方体的外接球,求出体对角线即为直径,但这种方法适用性较差;二是通过球的球心与各面外接圆圆心的连线与该平面垂直,设半径列方程求解;三是通过空间、平面坐标系进行求解.16、20+45,8【解析】试题分析:由题意得,该几何体为三棱柱,故其表面积S=2×1体积V=12×4×2×2=8,故填:20+4考点:1.三视图;2.空间几何体的表面积与体积.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)正弦定理的边角转换,以及两角和的正弦公式展开,特殊角的余弦值即可求出答案;(2)构造齐次式,利用正弦定理的边角转换,得到,结合余弦定理得到【详解】解:(1)由已知,得又∵∴∴,因为得∵∴.(2)∵又由余弦定理,得∴【点睛】1.考查学生对正余弦定理的综合应用;2.能处理基本的边角转换问题;3.能利用特殊的三角函数值推特殊角,属于中档题18、(Ⅰ)见解析;(Ⅱ)当时,函数的最小值是;当时,函数的最小值是【解析】

(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;

(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0<a<ln2时,函数f(x)的最小值是-a;当a≥ln2时,函数f(x)的最小值是ln2-2a.【详解】函数的定义域

为.

因为,令,可得;

当时,;当时,,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,

的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数.

又,

当时,的最小值是;

当时,的最小值为综上所述,结论为当时,函数的最小值是;

当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小19、(1)详见解析;(2)详见解析.【解析】

(1)连结根据中位线的性质证明即可.(2)证明,再证明平面即可.【详解】解:证明:连结是菱形对角线的交点,为的中点,是棱的中点,平面平面平面解:在菱形中,且为的中点,,,平面平面,平面平面.【点睛】本题主要考查了线面平行与垂直的判定,属于基础题.20、(1)(2)详见解析(3)事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化,详见解析【解析】

(1)由从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到,结合古典摡型的概率计算公式,即可求解;(2)由题意的所有可能值为,利用相互独立事件的概率计算公式,分别求得相应的概率,得到随机变量的分布列,利用期望的公式,即可求解.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,得到七概率为,即可得到结论.【详解】(1)由题意可知,从高校大学生中随机抽取1人,该学生在2021年或2021年之前升级到的概率估计为样本中早期体验用户和中期跟随用户的频率,即.(2)由题意的所有可能值为,记事件为“从早期体验用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,事件为“从中期跟随用户中随机抽取1人,该学生愿意为升级多支付10元或10元以上”,由题意可知,事件,相互独立,且,,所以,,,所以的分布列为0120.180.490.33故的数学期望.(3)设事件为“从这1000人的样本中随机抽取3人,这三位学生都已签约套餐”,那么.回答一:事件虽然发生概率小,但是发生可能性为0.02,所以认为早期体验用户没有发生变化.回答二:事件发生概率小,所以可以认为早期体验用户人数增加.【点睛】本题主要考查了离散型随机变量的分布列,数学期望的求解及应用,对于求离散型随机变量概率分布列问题首先要清楚离散型随机变量的可能取值,计算得出概率,列出离散型随机变量概率分布列,最后按照数学期望公式计算出数学期望,其中列出离散型随机变量概率分布列及计算数学期望是理科高考数学必考问题.21、(Ⅰ)(Ⅱ)见证明【解析】

(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而,两边取对数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论