版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,在△ABC中,过点A作射线AD∥BC,点D不与点A重合,且AD≠BC,连结BD交AC于点O,连结CD,设△ABO、△ADO、△CDO和△BCO的面积分别为S1、S2、SA.S1=C.S1+2.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其左视图是(
)A. B. C. D.3.在同一时刻,身高米的小强在阳光下的影长为米,一棵大树的影长为米,则树的高度为()A.米 B.米 C.米 D.米4.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在、之间(包含端点).有下列结论:①当时,;②;③;④.其中正确的有()A.1个 B.2个 C.3个 D.4个5.如图,在直角坐标系中,点A是x轴正半轴上的一个定点,点B是双曲线y=(x>0)上的一个动点,当点B的横坐标系逐渐增大时,△OAB的面积将会()A.逐渐变小 B.逐渐增大 C.不变 D.先增大后减小6.已知⊙O的直径为4,点O到直线l的距离为2,则直线l与⊙O的位置关系是A.相交 B.相切 C.相离 D.无法判断7.如图,点A,B,C都在⊙O上,若∠C=35°,则∠AOB的度数为()A.35° B.55° C.145° D.70°8.已知,则=()A. B. C. D.9.根据下面表格中的对应值:x3.243.253.26ax2+bx+c﹣0.020.010.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.x>3.2610.如图,在ABC中,点D为BC边上的一点,且AD=AB=5,AD⊥AB于点A,过点D作DE⊥AD,DE交AC于点E,若DE=2,则ADC的面积为()A. B.4 C. D.11.不等式的解集在数轴上表示正确的是()A. B.C. D.12.在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1与△OA1B1关于点B1成中心对称,再作△B2A3B3与△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是()A.(4n﹣1,) B.(2n﹣1,) C.(4n+1,) D.(2n+1,)二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AB=6,BC=4,M是AD的中点,N是AB边上的动点,将△AMN沿MN所在直线折叠,得到△,连接,则的最小值是________14.如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为18cm,BD的长为9cm,则纸面部分BDEC的面积为_____cm1.15.如图,在⊙O中,弦AB=8cm,OC⊥AB,垂足为C,OC=3cm,则⊙O的半径为______cm.16.一组数据3,2,1,4,的极差为5,则为______.17.已知二次函数的图像开口向上,则的值为________.18.已知扇形的面积为4π,半径为6,则此扇形的圆心角为_____度.三、解答题(共78分)19.(8分)(1016内蒙古包头市)一幅长10cm、宽11cm的图案,如图,其中有一横两竖的彩条,横、竖彩条的宽度比为3:1.设竖彩条的宽度为xcm,图案中三条彩条所占面积为ycm1.(1)求y与x之间的函数关系式;(1)若图案中三条彩条所占面积是图案面积的,求横、竖彩条的宽度.20.(8分)已知抛物线(1)抛物线经过原点时,求的值;(2)顶点在轴上时,求的值.21.(8分)如图,点B,E,C,F在一条直线上,AB=DE,AC=DF,BE=CF,求证:∠A=∠D.22.(10分)某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.(10分)如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm.点P从B出发,沿BC方向,以1cm/s的速度向点C运动,点Q从A出发,沿AB方向,以2cm/s的速度向点B运动;若两点同时出发,当其中一点到达端点时,两点同时停止运动,设运动时间为t(s)(t>0),△BPQ的面积为S(cm2).(1)t=2秒时,则点P到AB的距离是cm,S=cm2;(2)t为何值时,PQ⊥AB;(3)t为何值时,△BPQ是以BP为底边的等腰三角形;(4)求S与t之间的函数关系式,并求S的最大值.24.(10分)阅读下面内容,并按要求解决问题:问题:“在平面内,已知分别有个点,个点,个点,5个点,…,n个点,其中任意三个点都不在同一条直线上.经过每两点画一条直线,它们可以分别画多少条直线?”探究:为了解决这个问题,希望小组的同学们设计了如下表格进行探究:(为了方便研究问题,图中每条线段表示过线段两端点的一条直线)请解答下列问题:(1)请帮助希望小组归纳,并直接写出结论:当平面内有个点时,直线条数为;(2)若某同学按照本题中的方法,共画了条直线,求该平面内有多少个已知点.25.(12分)如图,中,,以为直径作,交于点,交于点.(1)求证:.(2)若,求的度数.26.在平面直角坐标系中,抛物线与轴的交点为A,B(点A在点B的左侧).(1)求点A,B的坐标;(2)横、纵坐标都是整数的点叫整点.①直接写出线段AB上整点的个数;②将抛物线沿翻折,得到新抛物线,直接写出新抛物线在轴上方的部分与线段所围成的区域内(包括边界)整点的个数.
参考答案一、选择题(每题4分,共48分)1、D【解析】根据同底等高判断△ABD和△ACD的面积相等,即可得到S1+S2=S3+S2,即【详解】∵△ABD和△ACD同底等高,∴SS1即S△ABC和△DBC同底等高,∴S△ABC∴S故A,B,C正确,D错误.故选:D.【点睛】考查三角形的面积,掌握同底等高的三角形面积相等是解题的关键.2、B【解析】根据左视图的定义“在侧面内,从左往右观察物体得到的视图”判断即可.【详解】根据左视图的定义,从左往右观察,两个正方体得到的视图是一个正方形,圆锥得到的视图是一个三角形,由此只有B符合故选:B.【点睛】本题考查了三视图中的左视图的定义,熟记定义是解题关键.另外,主视图和俯视图的定义也是常考点.3、D【分析】根据在同一时刻,物高和影长成正比,由已知列出比例式即可求得结果.【详解】解:∵在同一时刻,∴小强影长:小强身高=大树影长:大树高,即0.8:1.6=4.8:大树高,解得大树高=9.6米,故选:D.【点睛】本题考查了相似三角形在测量高度是的应用,把实际问题抽象到相似三角形中,利用相似三角形的性质解决问题是解题的关键是.4、C【分析】①由抛物线的顶点坐标的横坐标可得出抛物线的对称轴为x=1,结合抛物线的对称性及点A的坐标,可得出点B的坐标,由点B的坐标即可断定①正确;②由抛物线的开口向下可得出a<1,结合抛物线对称轴为x=-=1,可得出b=-2a,将b=-2a代入2a+b中,结合a<1即可得出②不正确;③由抛物线与y轴的交点的范围可得出c的取值范围,将(-1,1)代入抛物线解析式中,再结合b=-2a即可得出a的取值范围,从而断定③正确;④结合抛物线的顶点坐标的纵坐标为,结合a的取值范围以及c的取值范围即可得出n的范围,从而断定④正确.综上所述,即可得出结论.【详解】解:①由抛物线的对称性可知:
抛物线与x轴的另一交点横坐标为1×2-(-1)=2,
即点B的坐标为(2,1),
∴当x=2时,y=1,①正确;
②∵抛物线开口向下,
∴a<1.
∵抛物线的顶点坐标为(1,n),
∴抛物线的对称轴为x=-=1,
∴b=-2a,
2a+b=a<1,②不正确;
③∵抛物线与y轴的交点在(1,2)、(1,2)之间(包含端点),
∴2≤c≤2.
令x=-1,则有a-b+c=1,
又∵b=-2a,
∴2a=-c,即-2≤2a≤-2,
解得:-1≤a≤-,③正确;
④∵抛物线的顶点坐标为,∴n==c-,又∵b=-2a,2≤c≤2,-1≤a≤-,
∴n=c-a,≤n≤4,④正确.
综上可知:正确的结论为①③④.
故选C.【点睛】本题考查了二次函数图象与系数的关系,解决该题型题目时,利用二次函数的系数表示出来抛物线的顶点坐标是关键.5、A【解析】试题分析:根据反比例函数的性质结合图形易知△OAB的高逐渐减小,再结合三角形的面积公式即可判断.要知△OAB的面积的变化,需考虑B点的坐标变化,因为A点是一定点,所以OA(底)的长度一定,而B是反比例函数图象上的一点,当它的横坐标不断增大时,根据反比例函数的性质可知,函数值y随自变量x的增大而减小,即△OAB的高逐渐减小,故选A.考点:反比例函数的性质,三角形的面积公式点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.6、B【分析】根据圆心距和两圆半径的之间关系可得出两圆之间的位置关系.【详解】∵⊙O的直径为4,∴⊙O的半径为2,∵圆心O到直线l的距离是2,∴根据圆心距与半径之间的数量关系可知直线l与⊙O的位置关系是相切.故选:B.【点睛】本题考查了直线和圆的位置关系的应用,理解直线和圆的位置关系的内容是解此题的关键,注意:已知圆的半径是r,圆心到直线的距离是d,当d=r时,直线和圆相切,当d>r时,直线和圆相离,当d<r时,直线和圆相交.7、D【解析】∵∠C=35°,∴∠AOB=2∠C=70°.故选D.8、B【分析】由得到x=,再代入计算即可.【详解】∵,∴x=,∴=.故选B.【点睛】考查了求代数式的值,解题关键是根据得到x=,再代入计算即可.9、B【解析】根据表中数据可得出ax2+bx+c=0的值在-0.02和0.01之间,再看对应的x的值即可得.【详解】∵x=3.24时,ax2+bx+c=﹣0.02;x=3.1时,ax2+bx+c=0.01,∴关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是3.24<x<3.1.故选:B.【点睛】本题考查了估算一元二次方程的近似解:用列举法估算一元二次方程的近似解,具体方法是:给出一些未知数的值,计算方程两边结果,当两边结果愈接近时,说明未知数的值愈接近方程的根.10、D【分析】根据题意得出AB∥DE,得△CED∽△CAB,利用对应边成比例求CD长度,再根据等腰直角三角形求出底边上的高,利用面积公式计算即可.【详解】解:如图,过A作AF⊥BC,垂足为F,∵AD⊥AB,∴∠BAD=90°在Rt△ABD中,由勾股定理得,BD=,∵AF⊥BD,∴AF=.∵AD⊥AB,DE⊥AD,∴∠BAD=∠ADE=90°,∴AB∥DE,∴∠CDE=∠B,∠CED=∠CAB,∴△CDE∽△CBA,∴,∴,∴CD=,∴S△ADC=.故选:D【点睛】本题考查相似三角形的性质与判定及等腰直角三角形的性质,利用相似三角形的对应边成比例求线段长是解答此题的关键.11、B【解析】先求出不等式的解集,再在数轴上表示出来即可.【详解】解:,移项得:,合并同类项得:,系数化为1得,,在数轴上表示为:故选:B.【点睛】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.12、C【解析】试题分析:∵△OA1B1是边长为2的等边三角形,∴A1的坐标为(1,),B1的坐标为(2,0),∵△B2A2B1与△OA1B1关于点B1成中心对称,∴点A2与点A1关于点B1成中心对称,∵2×2﹣1=3,2×0﹣=﹣,∴点A2的坐标是(3,﹣),∵△B2A3B3与△B2A2B1关于点B2成中心对称,∴点A3与点A2关于点B2成中心对称,∵2×4﹣3=5,2×0﹣(﹣)=,∴点A3的坐标是(5,),∵△B3A4B4与△B3A3B2关于点B3成中心对称,∴点A4与点A3关于点B3成中心对称,∵2×6﹣5=7,2×0﹣=﹣,∴点A4的坐标是(7,﹣),…,∵1=2×1﹣1,3=2×2﹣1,5=2×3﹣1,7=2×3﹣1,…,∴An的横坐标是2n﹣1,A2n+1的横坐标是2(2n+1)﹣1=4n+1,∵当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是﹣,∴顶点A2n+1的纵坐标是,∴△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).故选C.考点:坐标与图形变化-旋转.二、填空题(每题4分,共24分)13、【分析】由折叠的性质可得AM=A′M=2,可得点A′在以点M为圆心,AM为半径的圆上,当点A′在线段MC上时,A′C有最小值,由勾股定理可求MC的长,即可求A′C的最小值.【详解】∵四边形ABCD是矩形,∴AB=CD=6,BC=AD=4,∵M是AD边的中点,∴AM=MD=2,∵将△AMN沿MN所在直线折叠,∴AM=A′M=2,∴点A′在以点M为圆心,AM为半径的圆上,∴如图,当点A′在线段MC上时,A′C有最小值,∵MC===2,∴A′C的最小值=MC−MA′=2−2,故答案为:2−2.【点睛】本题主要考查了翻折变换,矩形的性质、勾股定理,解题的关键是分析出A′点运动的轨迹.14、【分析】贴纸部分的面积可看作是扇形BAC的面积减去扇形DAE的面积.【详解】S=S扇形BAC﹣S扇形DAE==(cm1).故答案是:【点睛】本题考查扇形面积,解题的关键是掌握扇形面积公式.15、5【分析】先根据垂径定理得出AC的长,再由勾股定理即可得出结论.【详解】连接OA,∵OC⊥AB,AB=8,∴AC=4,∵OC=3,∴OA=故答案为:5.【点睛】此题考查勾股定理、垂径定理及其推论,解题关键在于连接OA作为辅助线.16、-1或1【分析】由题意根据极差的公式即极差=最大值-最小值.可能是最大值,也可能是最小值,分两种情况讨论.【详解】解:当x是最大值,则x-(1)=5,所以x=1;当x是最小值,则4-x=5,所以x=-1;故答案为-1或1.【点睛】本题考查极差的定义,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,同时注意分类的思想的运用.17、2【分析】根据题意:的最高次数为2,由开口向上知二次项系数大于0,据此求解即可.【详解】∵是二次函数,
∴,即
解得:,
又∵图象的开口向上,
∴,
∴.故答案为:.【点睛】本题综合考查了二次函数的性质及定义,要注意二次项系数的取值范围.18、1【分析】利用扇形面积计算公式:设圆心角是n°,圆的半径为R的扇形面积为S,则由此构建方程即可得出答案.【详解】解:设该扇形的圆心角度数为n°,∵扇形的面积为4π,半径为6,∴4π=,解得:n=1.∴该扇形的圆心角度数为:1°.故答案为:1.【点睛】此题考查了扇形面积的计算,熟练掌握公式是解此题的关键.三、解答题(共78分)19、(1);(1)横彩条的宽度为3cm,竖彩条的宽度为1cm.【分析】(1)由横、竖彩条的宽度比为3:1知横彩条的宽度为xcm,根据“三条彩条面积=横彩条面积+1条竖彩条面积﹣横竖彩条重叠矩形的面积”,列出函数关系式化简即可;(1)根据“三条彩条所占面积是图案面积的”,可列出关于x的一元二次方程,整理后求解即可.【详解】(1)根据题意可知,横彩条的宽度为xcm,∴y=10×x+1×11•x﹣1×x•x=﹣3x1+54x,即y与x之间的函数关系式为y=﹣3x1+54x;(1)根据题意,得:﹣3x1+54x=×10×11,整理,得:x1﹣18x+31=0,解得:x1=1,x1=16(舍),∴x=3,答:横彩条的宽度为3cm,竖彩条的宽度为1cm.考点:根据实际问题列二次函数关系式;一元二次方程的应用.20、(1)m=;(2)m=4或m=﹣1【分析】(1)抛物线经过原点,则,由此求解;(2)顶点在轴上,则,由此可以列出有关的方程求解即可;【详解】解:(1)∵抛物线y=x2﹣2mx+3m+4经过原点,∴3m+4=0,解得:m=(2)∵抛物线y=x2﹣2mx+3m+4顶点在x轴上,∴b2﹣4ac=0,∴(﹣2m)2﹣4×1×(3m+4)=0,解得:m=4或m=﹣1【点睛】本题考查了二次函数的性质,熟练掌握二次函数的有关性质是解决此类题的关键.21、证明见解析;【解析】试题分析:由BE=CF可证得BC=EF,又有AB=DE,AC=DF,根据SSS证得△ABC≌△DEF⇒∠A=∠D.证明:∵BE=CF,∴BC=EF,又∵AB=DE,AC=DF,∴△ABC≌△DEF.∴∠A=∠D.考点:全等三角形的判定与性质.22、(1);(2)时,w最大;(3)时,每天的销售量为20件.【分析】(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;(2)由题意得w=(x-30)(-2x+160)=-2(x-55)2+1250,即可求解;(3)由题意得(x-30)(-2x+160)≥800,解不等式即可得到结论.【详解】(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=-2x+160;(2)由题意得:w=(x-30)(-2x+160)=-2(x-55)2+1250,∵-2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w由最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x-30)(-2x+160)≥800,解得:x≤70,∴每天的销售量y=-2x+160≥20,∴每天的销售量最少应为20件.【点睛】此题主要考查了二次函数的应用以及一元二次不等式的应用、待定系数法求一次函数解析式等知识,正确利用销量×每件的利润=w得出函数关系式是解题关键.23、(1),;(2);(3);(4)S=﹣t2+3t,S的最大值为.【分析】(1)作PH⊥AB于H,根据勾股定理求出AB,证明△BHP∽△BCA,根据相似三角形的性质列出比例式,求出PH,根据三角形的面积公式求出S;(2)根据△BQP∽△BCA,得到=,代入计算求出t即可;(3)过Q作QG⊥BC于G,证明△QBG∽△ABC,根据相似三角形的性质列式计算,得到答案;(4)根据△QBG∽△ABC,用t表示出QG,根据三角形的面积公式列出二次函数关系式,根据二次函数的性质计算即可.【详解】解:在Rt△ABC中,AC=6cm,BC=8cm,由勾股定理得,AB===10cm,∴0<t≤5,经过ts时,BP=t,AQ=2t,则BQ=10﹣2t,(1)如图1,作PH⊥AB于H,当t=2时,BP=2,BQ=10﹣2t=6,∵∠BHP=∠BCA=90°,∠B=∠B,∴△BHP∽△BCA,∴=,即=,解得:PH=,∴S=×6×=,故答案为:;;(2)当PQ⊥AB时,∠BQP=∠BCA=90°,∠B=∠B,∴△BQP∽△BCA,∴=,即=,解得,t=,则当t=时,PQ⊥AB;(3)如图2,过Q作QG⊥BC于G,∵QB=QP,QG⊥BC,∴BG=GP=t,∵∠BGQ=∠C=90°,∠B=∠B,∴△QBG∽△ABC,∴=,即=,解得,t=,∴当t=时,△BPQ是以BP为底边的等腰三角形;(4)由(3)可知,△QBG∽△ABC,∴=,即=,解得,QG=﹣t+6,∴S=×t×(﹣t+6),=﹣t2+3t,=﹣(t﹣)2+,则当t=时,S的值最大,最大值为.【点睛】本题考查的是相似三角形的判定和性质、二次函数的应用以及三角形的面积计算,掌握相似
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人房产租赁管理服务协议
- 2025年铁件挂件行业深度研究分析报告
- 2025年度绿色能源信托资金借款合同协议2篇
- 《消防安全教育普及》课件
- 2025年个人门面房租赁合同包含租赁保证金及返还流程2篇
- 2025年湖南长城银河科技有限公司招聘笔试参考题库含答案解析
- 2025年消防演练场地搭建与实施合同范本2篇
- 2025个人股份无偿转让与公司战略调整服务协议4篇
- 2025年广东潮州潮安区商业总公司招聘笔试参考题库含答案解析
- 2025年贵州湄潭湄江工业投资集团招聘笔试参考题库含答案解析
- 《铁路轨道维护》课件-更换道岔尖轨作业
- 股份代持协议书简版wps
- 职业学校视频监控存储系统解决方案
- 《销售心理学培训》课件
- 智能养老院视频监控技术方案
- 2024年安徽省公务员录用考试《行测》真题及解析
- 你比我猜题库课件
- 丰顺县乡镇集中式饮用水水源地基础状况调查和风险评估报告
- 无人驾驶航空器安全操作理论复习测试附答案
- 2024年山东省青岛市中考语文试卷(附答案)
- 职业技术学校《跨境电子商务物流与仓储》课程标准
评论
0/150
提交评论