




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年广西壮族自治区桂林市资源县资源中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知条件p:<2,条件q:-5x-6<0,则p是q的
A、充分必要条件
B、充分不必要条件C、必要不充分条件
D、既不充分又不必要条件参考答案:B2.下表是某工厂10个车间2011年3月份产量的统计表,1到10车间的产量依次记为(如:表示6号车间的产量为980件).图2是统计下表中产量在一定范围内车间个数的一个算法流程图.那么算法流程(图2)输出的结果是(
)
车间12345678910产量108090093085015009809609008301250A.5
B.6
C.4
D.7参考答案:B算法流程图输出的结果是“产量大于900件的车间数”,从表中可知1、3、5、6、7、10共6个车间的产量大于900件.3.无论取何实数值,直线都过定点P,则P点坐标为(
)
A.(-1,3)
B.
C.
D.参考答案:D4.下列曲线中离心率为的是(
)A. B. C. D.参考答案:B【考点】双曲线的简单性质.【专题】计算题.【分析】通过验证法可得双曲线的方程为时,.【解答】解:选项A中a=,b=2,c==,e=排除.选项B中a=2,c=,则e=符合题意选项C中a=2,c=,则e=不符合题意选项D中a=2,c=则e=,不符合题意故选B【点评】本题主要考查了双曲线的简单性质.考查了双曲线方程中利用,a,b和c的关系求离心率问题.5.若复数z满足|z|=2,则|1+i+z|的取值范围是()A.[1,3] B.[1,4] C.[0,3] D.[0,4]参考答案:D【考点】A8:复数求模.【分析】设z=a+bi(a,b∈R),可得a2+b2=4,知点Z(a,b)的轨迹为以原点为圆心、2为半径的圆,|1+i+z|表示点Z(a,b)到点M(﹣1,﹣)的距离,结合图形可求.【解答】解:设z=a+bi(a,b∈R),则=2,即a2+b2=4,可知点Z(a,b)的轨迹为以原点为圆心、2为半径的圆,|1+i+z|表示点Z(a,b)到点M(﹣1,﹣)的距离,∵(﹣1,﹣)在|z|=2这个圆上,∴距离最小是0,最大是直径4,故选:D.【点评】本题考查复数的模、复数的几何意义,考查学生的运算求解能力,属中档题.6.若命题p:?x0>0,|x0|≤1,则命题p的否定是()A.?x>0,|x|>1 B.?x>0,|x|≥1 C.?x≤0,|x|<1 D.?x≤0,|x|≤1参考答案:A【考点】命题的否定.【分析】利用特称命题的否定是全称命题写出结果即可.【解答】解:∵特称命题的否定是全称命题.∴命题p:?x0>0,|x0|≤1的否定是:?x>0,|x|>1故选:A7.以下有关线性回归分析的说法不正确的是
(
)A.通过最小二乘法得到的线性回归直线经过样本的中心.B.用最小二乘法求回归直线方程,是寻求使最小的a,b的值.C.在回归分析中,变量间的关系若是非确定性关系,但因变量也能由自变量唯一确定.D.如果回归系数是负的,y的值随x的增大而减小.参考答案:C8.某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛,那么互斥不对立的两个事件是()A.恰有1名男生与恰有2名女生B.至少有1名男生与全是男生C.至少有1名男生与至少有1名女生D.至少有1名男生与全是女生参考答案:A考点:互斥事件与对立事件.专题:阅读型.分析:互斥事件是两个事件不包括共同的事件,对立事件首先是互斥事件,再就是两个事件的和事件是全集,由此规律对四个选项逐一验证即可得到答案.解答:解:A中的两个事件符合要求,它们是互斥且不对立的两个事件;B中的两个事件之间是包含关系,故不符合要求;C中的两个事件都包含了一名男生一名女生这个事件,故不互斥;D中的两个事件是对立的,故不符合要求.故选A点评:本题考查互斥事件与对立事件,解题的关键是理解两个事件的定义及两事件之间的关系.属于基本概念型题.9.在正方体中,E是的中点,则异面直线与所成角的余弦值为(
)A.
B.
C.
D.参考答案:B10.已知全集U=R,集合则等于(
) A.B. C.D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.双曲线的离心率为2,有一个焦点与抛物线y2=4x的焦点重合,则mn的值为.参考答案:【考点】双曲线的简单性质;抛物线的简单性质.【专题】计算题.【分析】先根据抛物线方程求得抛物线的焦点,进而可知双曲线的焦距,根据双曲线的离心率求得m,最后根据m+n=1求得n,则答案可得.【解答】解:抛物线y2=4x的焦点为(1,0),则双曲线的焦距为2,而双曲线的离心率为2,则a=,则有解得m=,n=∴mn=故答案为:.【点评】本题主要考查了圆锥曲线的共同特征.解题的关键是对圆锥曲线的基本性质能熟练掌握.12.若函数f(x)=x+(x>2)在x=a处取最小值,则a=.参考答案:3考点:基本不等式.专题:计算题.分析:将f(x)=x+化成x﹣2++2,使x﹣2>0,然后利用基本不等式可求出最小值,注意等号成立的条件,可求出a的值.解答:解:f(x)=x+=x﹣2++2≥4当x﹣2=1时,即x=3时等号成立.∵x=a处取最小值,∴a=3故答案为:3点评:本题主要考查了基本不等式在最值问题中的应用,注意“一正、二定、三相等”,属于基础题.13.已知复数,(其中i为虚数单位),若为实数,则实数a的值为_______.参考答案:-2【分析】根据复数的运算和实数的定义可求得结果.【详解】为实数
,解得:本题正确结果:-2【点睛】本题考查根据复数的类型求解参数值的问题,属于基础题.14.已知当抛物线型拱桥的顶点距水面2米时,量得水面宽8米。当水面升高1米后,水面宽度是________米.参考答案:15.设,则的从大到小关系是
.参考答案:16.已知函数在处取得极值10,则取值的集合为
参考答案:17.已知点M的坐标为(2,1),点满足,则的最小值为
.参考答案:作出约束条件所表示的平面区域,如图所示,点N是区域内的动点,当MN与直线垂直时,由点到直线的距离公式得,距离最小值为.
三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系中,有两定点和两动点,且,直线与直线交点轨迹为曲线(Ⅰ)求曲线的方程;
(Ⅱ)若直线分别与直线交于,在曲线上是否存在点,使得△的面积是△面积的4倍,若存在,求出点的横坐标,若不存在,说明理由.参考答案:(Ⅰ)因为,所以,设直线的方程为,直线的方程为,所以(5分).(Ⅱ)假设存在则有,所以|EC|·|ED|=4|EA|·|EB|,所以(8分).设,则,或.所以存在这样的点,它的横坐标为或(12分)19.求由抛物线y2=8x(y>0)与直线x+y﹣6=0及y=0所围成图形的面积.参考答案:【考点】定积分在求面积中的应用.【分析】根据定积分的定义结合图象可得,,然后利用定积分的定义进行计算.【解答】解:设所求图形面积为S,===20.已知数列{an},且为该数列的前项和.(1)写出数列{an}的通项公式;(2)计算,猜想Sn的表达式,并用数学归纳法证明;(3)求数列{an}的前n项和Sn的取值范围.参考答案:(1);(2),证明见详解;(3).【分析】(1)根据题意直接写出的通项公式;(2),由求得,同理求得.接着猜想,用数学归纳法证明,检验n=1时,猜想成立;假设,则当n=k+1时,由条件可得当n=k+1时,也成立,从而猜想仍然成立.(3)对的表达式进行变形化简,利用求函数值域的方法即可求得.【详解】(1)根据题意可得;(2);;;可以看到,上面表示四个结果的分数中,分子与项数n一致,分母可用项数n表示为.于是可以猜想.下面我们用数学归纳法证明这个猜想.①当时,左边,右边,猜想成立.②假设当时猜想成立,即.所以,当时猜想也成立.根据(1)和(2),可知猜想对任何都成立.(3)由(2)知,因为,所以,则,即,所以.【点睛】本题考查了数列知识与数学归纳法的应用,用数学归纳法证明数列有关问题是很常见的题型,关键是假设当n=k时,命题成立,来证明当n=k+1命题也成立,对于本题来说,计算化简是本题的关键.21.(本小题满分12分)已知是双曲线的左右焦点,是过的一条弦(、均在双曲线的左支上)。(1)若的周长为30,求.(2)若求的面积。参考答案:(1)由双曲线定义知,故有
……4分周长为,得.
……6分(2)在中,由余弦定理得
=
……9分,
……10分
……12分22.在直角坐标系xOy中,曲线C1的参数方程为(为参数).以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C2的极坐标方程为.(1)写出C1的普通方程和C2的直角坐标方程;
(2)设点P在C1上,点Q在C2上,求的最小值及此时P的直角坐标.参考答案:(1)的普通方程为:;的直角坐标方程为直线;(2)的最小值为.【分析】(1)消参数可得的普通方程;将的极坐标方程展开,根据,即可求得的直角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 8 A green world Grammar 教学设计 2024-2025学年牛津译林版八年级英语下册
- 一年级体育上册 第十八课接力跑教学设计
- 16 大家一起来合作 第一课时(教学设计)-部编版道德与法治一年级下册
- 七年级生物下册 4.4.3《输送血液的泵-心脏》第二课时教学设计 (新版)新人教版
- 9短诗三首《繁星(一三一)》教学设计-2023-2024学年统编版语文四年级下册
- 基于技术创新的研究与实践
- 2024年五年级英语上册 Unit 2 My Country and English-speaking Countries Lesson 7 China教学设计 冀教版(三起)
- 21《长相思》教学设计-2024-2025学年五年级上册语文统编版
- 乘法、除法(二)-7的乘、除法(教学设计)-2024-2025学年沪教版二年级数学上册
- Unit 1 Past and Present Reading 教学设计 2024-2025学年牛津译林版八年级英语下册
- (一模)2025年广东省高三高考模拟测试 (一) 语文试卷语文试卷(含官方答案)
- 管理学基础-形考任务一-国开-参考资料
- 3.3 服务业区位因素及其变化-以霸王茶姬为例【知识精研】同步教学课件(人教2019必修第二册)
- 三维网喷播植草施工方案
- 法律实务案例分析卷集及参考答案解析
- 家具设计与软装搭配知到智慧树章节测试课后答案2024年秋四川长江职业学院
- 2025人保寿险校园招聘开启啦笔试参考题库附带答案详解
- 2025年硅湖职业技术学院单招职业适应性测试题库含答案
- 眼科手术室患者安全
- 2025-2030年中国可降解塑料行业发展状况及投资前景规划研究报告
- 学校招生专员聘用合同模板
评论
0/150
提交评论