湖南省长沙市明德启南中学2021-2022学年中考数学模试卷含解析_第1页
湖南省长沙市明德启南中学2021-2022学年中考数学模试卷含解析_第2页
湖南省长沙市明德启南中学2021-2022学年中考数学模试卷含解析_第3页
湖南省长沙市明德启南中学2021-2022学年中考数学模试卷含解析_第4页
湖南省长沙市明德启南中学2021-2022学年中考数学模试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如下图所示,该几何体的俯视图是 ( )ABCD2已知关于x的不等式组12x+b1的解满足0 x2,则b满足的条件是()A0b2B3b1C3b1Db=1或33某厂接到加工7

2、20件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,设每天应多做x件才能按时交货,则x应满足的方程为( )ABCD4按如下方法,将ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得DEF,则下列说法正确的个数是()ABC与DEF是位似图形ABC与DEF是相似图形ABC与DEF的周长比为1:2ABC与DEF的面积比为4:1A1B2C3D45如图,在菱形ABCD中,M,N分别在AB,CD上,且AMCN,MN与AC交于点O,连接BO若DAC26,则OBC的度数为()A54B64C74D266定义运算“”为:ab=,如:1(2)=1(2

3、)2=1则函数y=2x的图象大致是()ABCD72016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( )A0.3341011 B3.341010 C3.34109 D3.341028如图,ABC中,DE垂直平分AC交AB于E,A=30,ACB=80,则BCE等于()A40B70C60D509如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4C6D410如图,数轴A、B上两点分别对应实数a、b,则下列结论正确的是( )Aab0Bab 0C1a+1b0D1a-1b011如图,

4、正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为()ABCD12已知关于x的二次函数yx22x2,当axa+2时,函数有最大值1,则a的值为()A1或1B1或3C1或3D3或3二、填空题:(本大题共6个小题,每小题4分,共24分)13如果抛物线y=ax2+5的顶点是它的最低点,那么a的取值范围是_14不等式组的解是_.15从正n边形 一个顶点引出的对角线将它分成了

5、8个三角形,则它的每个内角的度数是_ .16方程x+1=的解是_17在ABC中,MNBC 分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_18如图,在ABC中,AB=AC=2,BC=1点E为BC边上一动点,连接AE,作AEF=B,EF与ABC的外角ACD的平分线交于点F当EFAC时,EF的长为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)对于平面直角坐标系xOy中的任意两点M,N,给出如下定义:点M与点N的“折线距离”为:例如:若点M(-1,1),点N(2,-2),则点M与点N的“折线距离”为:根据以上定义,解决下列问题

6、:已知点P(3,-2)若点A(-2,-1),则d(P,A)= ;若点B(b,2),且d(P,B)=5,则b= ;已知点C(m,n)是直线上的一个动点,且d(P,C)0时,图象是y=对称轴右侧的部分;当x0时,图象是y=对称轴左侧的部分,所以C选项是正确的.【点睛】本题考查了二次函数的图象,利用定义运算“”为: ab=得出分段函数是解题关键.7、B【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数解:334亿=3.341010“点睛”

7、此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值8、D【解析】根据线段垂直平分线性质得出AE=CE,推出A=ACE=30,代入BCE=ACB-ACE求出即可【详解】DE垂直平分AC交AB于E,AE=CE,A=ACE,A=30,ACE=30,ACB=80,BCE=ACB-ACE=50,故选D【点睛】本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等9、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=ACD,所以,根据“

8、相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答10、C【解析】本题要先观察a,b在数轴上的位置,得b-10a1,然后对四个选项逐一分析【详解】A、因为b-10a1,所以|b|a|,所以a+b0,故选项A错误;B、因为b0a,所以ab0,故选项B错误;C、因为b-10a1,所以1a+1b0,故选项C正确;D、因为b-10a1,所以1a-1b0,故选项D错误故选C【点睛】本题考查了实数与数轴的对应关系,数轴上右边的数总是大于左边的数11、A【解析】分析:连接OE1,OD1,OD2,如

9、图,根据正六边形的性质得E1OD1=60,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得OD2=E1D1=2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,依此规律可得正六边形A11B11C11D11E11F11的边长=()102,然后化简即可详解:连接OE1,OD1,OD2,如图,六边形A1B1C1D1E1F1为正六边形,E1OD1=60,E1OD1为等边三角形,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,OD2E1D1,OD2=E1D1=

10、2,正六边形A2B2C2D2E2F2的边长=2,同理可得正六边形A3B3C3D3E3F3的边长=()22,则正六边形A11B11C11D11E11F11的边长=()102=故选A点睛:本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆记住正六边形的边长等于它的半径12、A【解析】分析:详解:当axa2时,函数有最大值1,1x22x2,解得: ,即-1x3, a=-1或a+2=-1, a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数

11、值y才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.二、填空题:(本大题共6个小题,每小题4分,共24分)13、a1【解析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a1,故答案为a114、【解析】分别求出各不等式的解集,再求出其公共解集即可【详解】 解不等式,得x1,解不等式,得x1,所以不等式组的解集是1x1,故答案是:1x1【点睛】考查了一元一次不等式解集的求法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)15、144【解析】根据多边形内角和公式计算即可.【详解】解

12、:由题知,这是一个10边形,根据多边形内角和公式:每个内角等于.故答案为:144.【点睛】此题重点考察学生对多边形内角和公式的应用,掌握计算公式是解题的关键.16、x=1【解析】无理方程两边平方转化为整式方程,求出整式方程的解得到x的值,经检验即可得到无理方程的解【详解】两边平方得:(x+1)1=1x+5,即x1=4,开方得:x=1或x=-1,经检验x=-1是增根,无理方程的解为x=1故答案为x=117、1【解析】MNBC,AMNABC,即,MN=1.故答案为1.18、1+【解析】当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,即可得到AEBC,

13、依据RtCFGRtCFH,可得CH=CG=,再根据勾股定理即可得到EF的长【详解】解:如图,当AB=AC,AEF=B时,AEF=ACB,当EFAC时,ACB+CEF=90=AEF+CEF,AEBC,CE=BC=2,又AC=2,AE=1,EG=,CG=,作FHCD于H,CF平分ACD,FG=FH,而CF=CF,RtCFGRtCFH,CH=CG=,设EF=x,则HF=GF=x-,RtEFH中,EH2+FH2=EF2,(2+)2+(x-)2=x2,解得x=1+,故答案为1+【点睛】本题主要考查了角平分线的性质,勾股定理以及等腰三角形的性质的运用,解决问题的关键是掌握等腰三角形的顶角平分线、底边上的中

14、线、底边上的高相互重合三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、(1) 6, 2或4, 1m4;(2)或.【解析】(1)根据“折线距离”的定义直接列式计算;根据“折线距离”的定义列出方程,求解即可;根据“折线距离”的定义列出式子,可知其几何意义是数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3.(2)由题意可知,根据图像易得t的取值范围【详解】解:(1) b=2或4 ,即数轴上表示数m的点到表示数3的点的距离与到表示数2的点的距离之和小于3,所以1m4 (2)设E(x,y),则,如图,若点E在F上,则.【点睛】本题主要考查坐标与

15、图形,正确理解新定义及其几何意义,利用数形结合的思想思考问题是解题关键.20、(1)w=(x200)y=(x200)(2x+1)=2x2+1400 x200000;(2)令w=2x2+1400 x200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=2x2+1400 x200000=2(x350)2+45000,当x=250时y=22502+1400250200000=25000;故最高利润为45000元,最低利润为25000元.【解析】试题分析:(1)根据销售利润=每天的销售量(销售单价-成本价),即可列出函数关系式

16、;(2)令y=40000代入解析式,求出满足条件的x的值即可;(3)根据(1)得到销售利润的关系式,利用配方法可求最大值试题解析:(1)由题意得:w=(x-200)y=(x-200)(-2x+1)=-2x2+1400 x-200000;(2)令w=-2x2+1400 x-200000=40000,解得:x=300或x=400,故要使每月的利润为40000元,销售单价应定为300或400元;(3)y=-2x2+1400 x-200000=-2(x-350)2+45000,当x=250时y=-22502+1400250-200000=25000;故最高利润为45000元,最低利润为25000元21

17、、(1);(2)【解析】【分析】(1)直接运用概率的定义求解;(2)根据题意确定k0,b0,再通过列表计算概率.【详解】解:(1)因为1、-1、2三个数中由两个正数,所以从中任意取一个球,标号为正数的概率是.(2)因为直线y=kx+b经过一、二、三象限,所以k0,b0,又因为取情况:k b1-1211,11,-11,2-1-1,1-1,-1-1.222,12,-12,2共9种情况,符合条件的有4种,所以直线y=kx+b经过一、二、三象限的概率是.【点睛】本题考核知识点:求规概率. 解题关键:把所有的情况列出,求出要得到的情况的种数,再用公式求出 .22、7.3米【解析】:如图作FHAE于H由题

18、意可知HAF=HFA=45,推出AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,由E=30,AB=5米,推出AE=2AB=10米,可得x+x =10,解方程即可【详解】解:如图作FHAE于H由题意可知HAF=HFA=45,AH=HF,设AH=HF=x,则EF=2x,EH=x,在RtAEB中,E=30,AB=5米,AE=2AB=10米,x+x=10,x=55,EF=2x=10107.3米,答:E与点F之间的距离为7.3米【点睛】本题考查的知识点是解直角三角形的应用-仰角俯角问题,解题的关键是熟练的掌握解直角三角形的应用-仰角俯角问题.23、4+2【解析】原式第一项利用负指数

19、幂法则计算,第二项利用零指数幂法则计算,第三项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果【详解】原式=3+1+3-2=4+224、(1)40(2)126,1(3)940名【解析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解【详解】(1)学生总数是24(20%8%)=200(人),则a=2008%=16,b=20020%=40;(2)n=360=126C组的人数是:20025%=1;(3)样本D、E两组的百分数的和为125%2

20、0%8%=47%,200047%=940(名)答估计成绩优秀的学生有940名【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题25、 (1)见解析;(2)见解析,(2x,2y)【解析】(1)利用网格特点和旋转的性质画出点A、B、C的对应点D、E、F,即可得到DEF;(2)先根据位似中心的位置以及放大的倍数,画出原三角形各顶点的对应顶点,再顺次连接各顶点,得到A1B1C1,根据A1B1C1结合位似的性质即可得P1的坐标.【详解】(1)如图所示,DEF即为所求;(2)如图所示,A1B1C1即为所求,这次变换后的对应点P1的坐标为(2x,2y),故答案为(2x,2y)【点睛】本题主要考查了位似变换与旋转变换,解决问题的关键是先作出图形各顶点的对应顶点,再连接各顶点得到新的图形在画位似图形时需要注意,位似图形的位似中心可能在两个图形之间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论