版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西省新余第四中学数学高一上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.某校早上6:30开始跑操,假设该校学生小张与小王在早上6:00~6:30之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张与小王至少相差5分钟到校的概率为()A. B.C. D.2.已知函数,若对任意,总存在,使得不等式都恒成立,则实数的取值范围为()A. B.C. D.3.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.4.一个扇形的面积是,它的半径是,则该扇形圆心角的弧度数是A. B.1C.2 D.5.已知函数,则的图像大致是()A. B.C. D.6.大西洋鲑鱼每年都要逆流而上,游回到自己出生的淡水流域产卵.记鲑鱼的游速为(单位:),鲑鱼的耗氧量的单位数为.科学研究发现与成正比.当时,鲑鱼的耗氧量的单位数为.当时,其耗氧量的单位数为()A. B.C. D.7.若集合,则下列选项正确的是()A. B.C. D.8.英国物理学家和数学家牛顿提出了物体在常温环境下温度变化的冷却模型,设物体的初始温度为,环境温度为,其中,经过后物体温度满足(其中k为正常数,与物体和空气的接触状况有关).现有一个的物体,放在的空气中冷却,后物体的温度是,则()(参考数据:)A.1.17 B.0.85C.0.65 D.0.239.有位同学家开了个小卖部,他为了研究气温对热饮销售的影响,经过统计得到一天所卖的热饮杯数(y)与当天气温(x℃)之间的线性关系,其回归方程为=-2.35x+147.77.如果某天气温为2℃,则该小卖部大约能卖出热饮的杯数是A.140 B.143C.152 D.15610.函数与的图象在上的交点有()A.个 B.个C.个 D.个二、填空题:本大题共6小题,每小题5分,共30分。11.若两平行直线2x+y-4=0与y=-2x-k-2的距离不大于,则k的取值范围是____12.函数在上为单调递增函数,则实数的取值范围是______13.当时,的最小值为______14.写出一个最小正周期为2的奇函数________15.定义在上的函数则的值为______16.已知正实数,,且,若,则的值域为__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知点,是以为底边的等腰三角形,点在直线:上(1)求边上的高所在直线的方程;(2)求的面积18.定义在R上的函数对任意的都有,且,当时.(1)求的值,并证明是R上的增函数;(2)设,(i)判断的单调性(不需要证明)(ii)解关于x的不等式.19.已知,若在上的最大值为,最小值为,令.(1)求的函数表达式;(2)判断函数的单调性,并求出的最小值.20.对于函数f(x),若在定义域内存在实数x0,满足f(-x0)=-f(x(1)已知函数f(x)=sin(x+π3)(2)设f(x)=2x+m是定义在[-1,1]上的“M(3)若f(x)=log2(x221.如图,在四棱锥中,,,,且,分别为的中点.(1)求证:平面;(2)求证:平面;(3)若二面角的大小为,求四棱锥的体积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】设小张与小王的到校时间分别为6:00后第分钟,第分钟,由题意可画出图形,利用几何概型中面积比即可求解.【详解】设小张与小王的到校时间分别为6:00后第分钟,第分钟,可以看成平面中的点试验的全部结果所构成的区域为是一个正方形区域,对应的面积,则小张与小王至少相差5分钟到校事件(如阴影部分)则符合题意的区域,由几何概型可知小张与小王至少相差5分钟到校的概率为.故选:A【点睛】本题考查了几何概率模型,解题的关键是画出满足条件的区域,属于基础题.2、D【解析】探讨函数性质,求出最大值,再借助关于a函数单调性列式计算作答.【详解】依题意,,则是上的奇函数,当时,,在上单调递增,在上单调递减,则,由奇函数性质知,函数在上的最大值是,依题意,存在,,令,显然是一次型函数,因此,或,解得或,所以实数的取值范围为.故选:D3、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.4、C【解析】由题意首先求得弧长,然后求解圆心角的弧度数即可.【详解】设扇形的弧长为,由题意可得:,则该扇形圆心角的弧度数是.本题选择C选项.【点睛】本题主要考查扇形面积公式,弧度数的定义等知识,意在考查学生的转化能力和计算求解能力.5、C【解析】判断函数的奇偶性,再利用时,函数值的符号即可求解.【详解】由,则,所以函数为奇函数,排除B、D.当,则,所以,,所以,排除A.故选:C6、D【解析】设,利用当时,鲑鱼的耗氧量的单位数为求出后可计算时鲑鱼耗氧量的单位数.【详解】设,因为时,,故,所以,故时,即.故选:D.【点睛】本题考查对数函数模型在实际中的应用,解题时注意利用已知的公式来求解,本题为基础题.7、C【解析】利用元素与集合,集合与集合的关系判断.【详解】因为集合是奇数集,所以,,,A,故选:C8、D【解析】根据所给公式,将所给条件中的温度相应代入,利用对数的运算求解即可.【详解】根据题意:的物体,放在的空气中冷却,后物体的温度是,有:,所以,故,即,故选:D.9、B【解析】一个热饮杯数与当天气温之际的线性关系,其回归方程某天气温为时,即则该小卖部大约能卖出热饮的杯数是故选点睛:本题主要考查的知识点是线性回归方程的应用,即根据所给的或者是做出的线性回归方程,预报的值,这是一些解答题10、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用平行线之间的距离及两直线不重合列出不等式,求解即可【详解】y=﹣2x﹣k﹣2的一般式方程为2x+y+k+2=0,则两平行直线的距离d得,|k+6|≤5,解得﹣11≤k≤﹣1,当k+2=﹣4,即k=﹣6,此时两直线重合,所以k的取值范围是故答案为【点睛】本题考查了两平行直线间的距离,考查两直线平行的条件,考查计算能力,属于基础题.12、【解析】令∴即函数的增区间为,又函数在上为单调递增函数∴令得:,即,得到:,又∴实数的取值范围是故答案为13、【解析】将所求代数式变形为,利用基本不等式即可求解.【详解】因为,所以,所以,当且仅当即时等号成立,所以的最小值为,故答案为:.14、【解析】根据奇函数性质可考虑正弦型函数,,再利用周期计算,选择一个作答即可.【详解】由最小正周期为2,可考虑三角函数中的正弦型函数,,满足,即是奇函数;根据最小正周期,可得.故函数可以是中任一个,可取.故答案为:.15、【解析】∵定义在上的函数∴故答案为点睛::(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围16、【解析】因为,所以.因为且,.所以,所以,所以,.则的值域为.故答案为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;(2)由,求得,利用两点间的距离公式和三角形的面积公式,即可求得三角形的面积.试题解析:(Ⅰ)由题意可知,为的中点,∴,且,∴所在直线方程为,即.(Ⅱ)由得∴∴,∴∴18、(1),证明见解析(2)(i)在上是单减单减函数(ii)【解析】(1)令可得,再可得答案,设,则,所以可证明单调性;(2)(i)根据复合函数的单调性法则可得答案;(ii)由题意可得,,结合函数的单调性可得的解为,则原不等式等价于,从而可得答案.【小问1详解】在中,令可得,则令可得,可得任取且,则,所以则即,所以是R上的增函数【小问2详解】(i)由在上是单减单减函数,又单调递增由复合函数的单调性规律可得在上是单减单减函数.(ii)由,所以的解为从而不等式的解为,即即,整理可得即,解得或,所以或所以原不等式的解集为19、(1);(2)答案见解析.【解析】解:(1)函数的对称轴为直线,而∴在上最小值为,①当时,即时,②当2时,即时,,(2)请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.20、(1)函数f(x)=sin(x+π3)是“M【解析】(1)由f(-x)=-f(x),得sin(-x+π3)=-(2)由题存在实数x0∈[-1,1]满足f(-x0)=-f(x0),即方程2xm取最小值-(3)由题即存在实数x0,满足f(-x0)=-f(x0)试题解析:(1)由f(-x)=-f(x),得:sin所以3所以存在x0=所以函数f(x)=sin(x+π(2)因为f(x)=2x+m是定义在[-1,1]所以存在实数x0∈[-1,1]满足即方程2x+2令t=则m=-12(t+1t),因为所以当t=12或t=2时,m(3)由x2-2mx>0对x≥2因为若f(x)=log2(所以存在实数x0,满足①当x0≥2时,-x0因为函数y=12x-4②当-2<x0<2时,-2<-③当x0≤-2时,-x0因为函数y=-12综上所述,实数m的取值范围是[-1,1)点睛:已知方程有根问题可转化为函数有零点问题,求参数常用的方法和思路有:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数形结合法:先对解析式变形,在同一个平面直角坐标系中,画出函数图像,然后数形结合求解.21、(1)见解析(2)见解析(3)【解析】(1)取的中点,根据题意易证四边形为平行四边形,所以,从而易证结论;(2)由,可得线面垂直;(3)由二面角的大小为,可得,求出底面直角梯形的面积,进而可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江苏省苏州立达中学2024-2025学年九年级上学期期中考试物理试题(解析版)
- 电商平台与快递企业2024年度合作发展战略协议3篇
- 二零二四年度航空航天器零部件制造合同
- 二零二四年度版权买卖合同标的物确认
- 茶叶包装设计及定制合同04
- 2024版二手房交易及按揭贷款合同
- 二零二四年云计算数据中心设计与施工合同
- 电费合同范本(2篇)
- 只搭伙不领证的老伴协议书(2篇)
- 房屋解除合同协议书
- 废弃塑料回收利用行业经营分析报告
- 国开(吉林)2024年秋《动物外产科》形考作业1-3终考答案
- 2024年冷库工程设计施工协议
- 工厂高层改造脚手架方案
- 武汉周黑鸭公司股利政策的优化的案例分析5600字论文
- 2022年安徽理工大学软件工程专业《计算机网络》科目期末试卷B(有答案)
- 疼痛护理学组年终总结
- 学校消防安全检查记录表
- 肿瘤科病人护理
- 2025届高考语文复习:时事新闻类作文破题+课件
- 北京能源集团有限责任公司招聘笔试题库2024
评论
0/150
提交评论