




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市进才实验中学高二上数学期末综合测试模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,角A,B,C所对的边分别为a,b,c,,,则()A. B.1C.2 D.42.已知是定义在上的函数,其导函数为,且,且,则不等式的解集为()A. B.C. D.3.在等差数列中,,则()A.9 B.6C.3 D.14.在长方体中,,,点分别在棱上,,,则()A. B.C. D.5.已知是数列的前项和,,则数列是()A.公比为3的等比数列 B.公差为3的等差数列C.公比为的等比数列 D.既非等差数列,也非等比数列6.下列事件:①连续两次抛掷同一个骰子,两次都出现2点;②某人买彩票中奖;③从集合中任取两个不同元素,它们的和大于2;④在标准大气压下,水加热到90℃时会沸腾.其中是随机事件的个数是()A.1 B.2C.3 D.47.“”是“直线与直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.9.已知空间四边形,其对角线、,、分别是边、的中点,点在线段上,且使,用向量,表示向量是A. B.C. D.10.江西省重点中学协作体于2020年进行了一次校际数学竞赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在之间,其得分的频率分布直方图如图,则下列结论错误的是()A.得分在之间的共有40人B.从这100名参赛者中随机选取1人,其得分在的概率为0.5C.这100名参赛者得分的中位数为65D.可求得11.若且,则下列选项中正确的是()A B.C. D.12.在中,若,则()A.150° B.120°C.60° D.30°二、填空题:本题共4小题,每小题5分,共20分。13.设椭圆标准方程为,则该椭圆的离心率为______14.若复数z=为纯虚数(),则|z|=_____.15.点为双曲线上一点,为焦点,如果则双曲线的离心率为___________.16.设Sn是等差数列{an}的前n项和,若数列{an}满足an+Sn=An2+Bn+C且A>0,则+B-C的最小值为________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,侧面PBC是边长为2的等边三角形,M,N分别为AB,AP的中点.过MN的平面与侧面PBC交于EF(1)求证:;(2)若平面平面ABC,,求直线PB与平面PAC所成角的正弦值18.(12分)已知数列满足(1)求数列的通项公式;(2)设,求数列的前n项和19.(12分)已知函数,,其中.(1)试讨论函数的单调性;(2)若,证明:.20.(12分)如图,在棱长为2的正方体中,E,F分别为AB,BC上的动点,且.(1)求证:;(2)当时,求点A到平面的距离.21.(12分)已知,,其中(1)已知,若为真,求的取值范围;(2)若是的充分不必要条件,求实数的取值范围22.(10分)如图所示,在四棱锥中,BC//平面PAD,,E是PD的中点(1)求证:CE//平面PAB;(2)若M是线段CE上一动点,则线段AD上是否存在点,使MN//平面PAB?说明理由
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】直接运用正弦定理可得,解得详解】由正弦定理,得,所以故选:C2、B【解析】令,再结合,和已知条件将问题转化为,最后结合单调性求解即可.【详解】解:令,则,因为,所以,即函数为上的增函数,因为,不等式可化为,所以,故不等式的解集为故选:B3、A【解析】直接由等差中项得到结果.详解】由得.故选:A.4、D【解析】依题意可得,从而得到,即可得到,从而得解;【详解】解:由长方体的性质可得,又,所以,因为,所以,所以,因为,所以;故选:D5、D【解析】由得,然后利用与的关系即可求出【详解】因为,所以所以当时,时,所以故数列既非等差数列,也非等比数列故选:D【点睛】要注意由求要分两步:1.时,2.时.6、B【解析】因为随机事件指的是在一定条件下,可能发生,也可能不发生的事件,只需逐一判断4个事件哪一个符合这种情况即可【详解】解:连续两次抛掷同一个骰子,两次都出现2点这一事件可能发生也可能不发生,①是随机事件某人买彩票中奖这一事件可能发生也可能不发生,②是随机事件从集合,2,中任取两个元素,它们的和必大于2,③是必然事件在标准大气压下,水加热到时才会沸腾,④是不可能事件故随机事件有2个,故选:B7、A【解析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断.【详解】由,得,即或所以,反之,则不然所以“”是“直线与直线垂直”的充分不必要条件.故选:A8、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A9、C【解析】根据所给的图形和一组基底,从起点出发,把不是基底中的向量,用是基底的向量来表示,就可以得到结论【详解】解:故选:【点睛】本题考查向量的基本定理及其意义,解题时注意方法,即从要表示的向量的起点出发,沿着空间图形的棱走到终点,若出现不是基底中的向量的情况,再重复这个过程,属于基础题10、C【解析】根据给定的频率分布直方图,结合直方图的性质,逐项计算,即可求解.【详解】由频率分布直方图,可得A中,得分在之间共有人,所以A正确;B中,从100名参赛者中随机选取1人,其得分在中的概率为,所以B正确;D中,由频率分布直方图的性质,可得,解得,所以D正确.C中,前2个小矩形面积之和为0.4,前3个小矩形面积之和为0.7,所以中位数在[60,70],这100名参赛者得分的中位数为,所以C不正确;故选:C.11、C【解析】对于A,作商比较,对于B,利用基本不等式的推广式判断,对于C,利用在单位圆中,内接正边形的面积小于内接正边形的面积判断,对于D,利用放缩法判断【详解】,故错误;,故错误;在单位圆中,内接正边形的面积小于内接正边形的面积(必修三阅读材料割圆术),则,故正确;,故错误故选:C【点睛】关键点点睛:此题考查不等式的综合应用,考查基本不等式的推广式的应用,考查放缩法的应用,对于C项解题的关键是利用了在单位圆中,内接正边形的面积小于内接正边形的面积求解,考查数学转化思想,属于难题12、C【解析】根据正弦定理将化为边之间的关系,再结合余弦定理可得答案.【详解】若,则根据正弦定理得:,即,而,故,故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##【解析】求出、的值,即可求得椭圆的离心率.【详解】在椭圆中,,,则,因此,该椭圆的离心率为.故答案为:.14、【解析】利用复数z=为纯虚数求出a,即可求出|z|.【详解】z=.由纯虚数的定义知,,解得.所以.故|z|=.故答案为:.15、【解析】利用双曲线的定义、离心率的计算公式、两角和差的正弦公式即可得出.【详解】由可得,根据双曲线的定义可得:,.故答案为:16、2【解析】因为{an}为等差数列,设公差为d,由an+Sn=An2+Bn+C,得a1+(n-1)d+na1+n(n-1)d=an+Sn=An2+Bn+C,即(d-A)n2+(a1+-B)n+(a1-d-C)=0对任意正整数n都成立所以(d-A)=0,a1+d-B=0,a1-d-C=0,所以A=d,B=a1+d,C=a1-d,所以3A-B+C=0.+B-C=+3A≥2.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)由题意先证明平面PBC,然后由线面平行的性质定理可证明.(2)由平面平面ABC,取BC中点O,则平面ABC,可得,由条件可得,以O坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,利用向量法求解即可.【小问1详解】因为M,N分别为AB,AP的中点,所以,又平面PBC,所以平面PBC,因为平面平面,所以【小问2详解】因为平面平面ABC,取BC中点O,连接PO,AO,因为是等边三角形,所以,所以平面ABC,故,又因,所以,以O为坐标原点,分别以OB,AO,OP为x,y,z轴建立空间直角坐标系,可得:,,,,,所以,,,设平面PAC的法向量为,则,则,令,得,,所以,所以直线PB与平面PAC所成角的正弦值为18、(1)(2)【解析】(1)当时,由,可得,两式相减化简可求得通项,(2)由(1)得,然后利用裂项相消法可求得结果【小问1详解】因为,所以时,,两式作差得,,所以时,,又时,,得,符合上式,所以的通项公式为【小问2详解】由(1)知,所以即数列的前n项和19、(1)答案见解析(2)证明见解析【解析】(1)先求出函数的定义域,然后求导,再根据导数的正负求出函数的单调区间,(2)要证,只要证,由于时,,当时,令,再利用导数求出其最小值大于零即可【小问1详解】的定义域为当时,,在上单调递增;当时,令,解得;令,解得;综上所述:当时,在上单调递增,无减区间;当时,在上单调递减,在上单调递增;【小问2详解】,,即证:,即证:当时,,,当时,令,则在上单调递增在上单调递增综上所述:,即20、(1)证明见解析(2)【解析】(1)如图,以为轴,为轴,为轴建立空间直角坐标系,利用空间向量法分别求出和,再证明即可;(2)利用空间向量的数量积求出平面的法向量,结合求点到面距离的向量法即可得出结果.【小问1详解】证明:如图,以为轴,为轴,为轴,建立空间直角坐标系,则,,,,所以,,所以,故,所以;【小问2详解】当时,,,,,则,,,设是平面的法向量,则由,解得,取,得,设点A到平面的距离为,则,所以点A到平面的距离为.21、(1)(2)【解析】(1)求出两个命题为真命题时的解集然后利用为真,取并求得的取值范围;(2)由是的充分不必要条件,即,,其逆否命题为,列出不等式组求解即可.【详解】(1)由,解得,所以又,因为,解得,所以.当时,,又为真,所以.(2)由是的充分不必要条件,即,,其逆否命题为,由(1),,所以,即:【点睛】该题考查的是有关逻辑的问题,涉及到的知识点有命题的真假判断与应用,充分不必要条件对应的等价结果,注意原命题与逆否命题等价,属于简单题目.22、(1)证明见解析;(2)存在,理由见解析.【解析】(1)为中点,连接,由中位线、线面平行的性
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭装修施工投诉3篇
- 员工外出安全免责协议书3篇
- 奶茶店股份合同协议书3篇
- 工业控制计算机在工业互联网平台中的关键作用考核试卷
- 租赁设备市场融资渠道拓展考核试卷
- 河湖治理工程概预算与招投标考核试卷
- 玻璃工艺品的防伪技术考核试卷
- 《资治通鉴》中的帝王智慧与现代管理启示
- 2025电子版本软件购买协议合同书
- 委托担保合同的性质
- 华大新高考联盟2025届高三4月教学质量测评化学+答案
- 2025年中国防晒护理洗发露市场调查研究报告
- 2025年陕西省普通高中学业水平合格考试模拟卷(五)历史试题(含答案)
- 2025年有关“我为群众办实事”主题日活动工作方案
- 铁路雨季三防培训课件
- (精选word)洪恩识字-生字卡片1-200
- CNC作业指导书及操作规范
- EHS安全培训教育周知卡(机械伤害)
- 贵州生态停车场建设工程监理规划
- 大班音乐欣赏粤曲《荔枝颂》微课件
- 《肌内注射说课》ppt课件
评论
0/150
提交评论