




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届黑龙江省高一数学第一学期期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.2.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-23.幂函数的图象经过点,则()A.是偶函数,且在上单调递增B.是偶函数,且在上单调递减C.是奇函数,且在上单调递减D.既不是奇函数,也不是偶函数,在上单调递增4.若直线经过两点,,且倾斜角为,则的值为()A.2 B.1C. D.5.下列函数在定义域内既是奇函数,又是减函数的是()A. B.C. D.6.已知集合,,若,则的值为A.4 B.7C.9 D.107.设且,若对恒成立,则a的取值范围是()A. B.C. D.8.若方程x2+ax+a=0的一根小于﹣2,另一根大于﹣2,则实数a的取值范围是()A.(4,+∞) B.(0,4)C.(﹣∞,0) D.(﹣∞,0)∪(4,+∞)9.,是两个平面,,是两条直线,则下列命题中错误的是()A.如果,,,那么B.如果,,那么C.如果,,,那么D.如果,,,那么10.在数学史上,一般认为对数的发明者是苏格兰数学家——纳皮尔(Napier,1550-1617年).在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.在那个时代,计算多位数之间的乘积,还是十分复杂的运算,因此纳皮尔首先发明了一种计算特殊多位数之间乘积的方法.让我们来看看下面这个例子:
12345678…1415…272829248163264128256…1638432768…134217728268435356536870912这两行数字之间的关系是极为明确的:第一行表示2的指数,第二行表示2的对应幂.如果我们要计算第二行中两个数的乘积,可以通过第一行对应数字的和来实现.比如,计算64×256的值,就可以先查第一行的对应数字:64对应6,256对应8,然后再把第一行中的对应数字加和起来:6+8=14;第一行中的14,对应第二行中的16384,所以有:64×256=16384,按照这样的方法计算:16384×32768=A.134217728 B.268435356C.536870912 D.513765802二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则________.12.定义域为上的函数满足,且当时,,若,则a的取值范围是______13.设集合,,则______14.已知a,b,c是空间中的三条直线,α是空间中的一个平面①若a⊥c,b⊥c,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥α,b⊥α,则a⊥b;④若a∥b,a∥α,则b∥α;说法正确的序号是______15.若,且α为第一象限角,则___________.16.当时x≠0时的最小值是____.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知a、b>0且都不为1,函数f(1)若a=2,b=12,解关于x的方程(2)若b=2a,是否存在实数t,使得函数gx=tx+log2f18.在等腰梯形中,已知,,,,动点和分别在线段和上(含端点),且,且(、为常数),设,.(Ⅰ)试用、表示和;(Ⅱ)若,求的最小值.19.设关于x二次函数(1)若,解不等式;(2)若不等式在上恒成立,求实数m的取值范围20.已知圆C经过点,两点,且圆心在直线上(1)求圆C的方程;(2)已知、是过点且互相垂直的两条直线,且与C交于A,B两点,与C交于P、Q两点,求四边形APBQ面积的最大值21.已知的三个顶点为,,.(1)求边所在直线的方程;(2)若边上的中线所在直线的方程为,且,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:2、D【解析】由奇函数定义得,从而求得,然后由计算【详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【点睛】本题考查奇函数的定义,掌握奇函数的概念是解题关键3、D【解析】设幂函数方程,将点坐标代入,可求得的值,根据幂函数的性质,即可求得答案.【详解】设幂函数的解析式为:,将代入解析式得:,解得,所以幂函数,所以既不是奇函数,也不是偶函数,且,所以在上单调递增.故选:D.4、A【解析】直线经过两点,,且倾斜角为,则故答案为A.5、D【解析】利用常见函数的奇偶性和单调性逐一判断即可.【详解】对于A,,是偶函数,不满足题意对于B,是奇函数,但不是减函数,不满足题意对于C,,是奇函数,因为是增函数,是减函数,所以是增函数,不满足题意对于D,是奇函数且是减函数,满足题意故选:D6、A【解析】可知,或,所以.故选A考点:交集的应用7、C【解析】分,,作与的图象分析可得.【详解】当时,由函数与的图象可知不满足题意;当时,函数单调递减,由图知,要使对恒成立,只需满足,得.故选:C注意事项:
用黑色墨水的钢笔或签字笔将答案写在答题卡上.
本卷共9题,共60分.8、A【解析】令,利用函数与方程的关系,结合二次函数的性质,列出不等式求解即可.【详解】令,∵方程的一根小于,另一根大于,∴,即,解得,即实数的取值范围是,故选A.【点睛】本题考查一元二次函数的零点与方程根的关系,数形结合思想在一元二次函数中的应用,是基本知识的考查9、D【解析】A.由面面垂直的判定定理判断;B.由面面平行的性质定理判断;C.由线面平行的性质定理判断;D.由平面与平面的位置关系判断;【详解】A.如果,,,由面面垂直的判定定理得,故正确;B.如果,,由面面平行的性质定理得,故正确;C.如果,,,由线面平行的性质定理得,故正确;D如果,,,那么相交或平行,故错误;故选:D【点睛】本题主要考查空间中线线、线面、面面间的位置关系,还考查了理解辨析和逻辑推理的能力,属于中档题.10、C【解析】先找到16384与32768在第一行中的对应数字,进行相加运算,再找和对应第二行中的数字即可.【详解】由已知可知,要计算16384×32768,先查第一行的对应数字:16384对应14,32768对应15,然后再把第一行中的对应数字加起来:14+15=29,对应第二行中的536870912,所以有:16384×32768=536870912,故选C.【点睛】本题考查了指数运算的另外一种算法,关键是认真审题,理解题意,属于简单题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用诱导公式化简等式,可求出的值,将所求分式变形为,在所得分式的分子和分母中同时除以,将所求分式转化为只含的代数式,代值计算即可.【详解】,,,因此,.故答案为:.【点睛】本题考查利用诱导公式和弦化切思想求值,解题的关键就是求出的值,考查计算能力,属于基础题.12、【解析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【点睛】本题考查了函数的性质的应用及不等式的求解,属于中档题.13、【解析】联立方程组,求出交点坐标,即可得到答案【详解】解方程组,得或.故答案为:14、③【解析】根据空间线面位置关系的定义,性质判断或举反例说明【详解】对于①,若a,b为平面α的直线,c⊥α,则a⊥c,b⊥c,但a∥b不一定成立,故①错误;对于②,若a∥α,b∥α,则a,b的关系不确定,故②错误;对于③,不妨设a在α上的射影为a′,则a′⊂α,a∥a′,由b⊥α可得b⊥a′,于是a⊥b,故③正确;对于④,若b⊂α,显然结论不成立,故④错误.故答案为③【点睛】本题考查了空间线面位置关系的判断,属于中档题,15、【解析】先求得,进而可得结果.【详解】因为,又为第一象限角,所以,,故.故答案为:.16、【解析】直接利用基本不等式的应用求出结果【详解】解:由于,所以(当且仅当时,等号成立)故最小值为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)x=-(2)存,t=-1【解析】(1)根据题意可得2x(2)由题意可得gx=tx+log21+2【小问1详解】因为a=2,b=12,所以方程fx=fx+1化简得2x=2-x-1,所以【小问2详解】因为b=2a,故fxgx因为gx是偶函数,故g-x=g而g-x于是tx=-t+1x对任意的实数x18、(Ⅰ),;(Ⅱ).【解析】(Ⅰ)过点作,交于点,证明出,从而得出,然后利用向量加法的三角形法则可将和用、表示;(Ⅱ)计算出、和的值,由得出,且有,然后利用向量数量积的运算律将表示为以为自变量的二次函数,利用二次函数的基本性质可求出的最小值.【详解】(Ⅰ)如下图所示,过点作,交于点,由于为等腰梯形,则,且,,即,又,所以,四边形为平行四边形,则,所以,为等边三角形,且,,,,;(Ⅱ),,,由题意可知,,由得出,所以,,,令,则函数在区间上单调递减,所以,,因此,的最小值为.【点睛】本题考查利用基底表示向量,同时也考查了平面向量数量积最值的计算,考查运算求解能力,属于中等题.19、(1);(2).【解析】(1)由题设有,解一元二次不等式求解集即可.(2)由题意在上恒成立,令并讨论m范围,结合二次函数的性质求参数范围.【小问1详解】由题设,等价于,即,解得,所以该不等式解集为.【小问2详解】由题设,在上恒成立令,则对称轴且,①当时,开口向下且,要使对恒成立,所以,解得,则②当时,开口向上,只需,即综上,20、(1)(2)7【解析】(1)根据题意,求出MN的中垂线的方程为,分析可得圆心为直线和的交点,联立直线的方程可得圆心的坐标,进而求出圆的半径,由圆的标准方程可得答案;(2)根据题意,分2种情况讨论:,当直线,,其中一条直线斜率为0时,另一条斜率不存在,分析可得四边形APBQ的面积;,当直线,斜率均存在时,设直线的斜率为k,则方程的方程为,用k表示四边形APBQ的面积,由二次函数分析其最值,综合即可得答案【小问1详解】根据题意,点,,则线段MN的中垂线方程为,圆心为直线和的交点,则有,解得,所以圆C的圆心坐标为;半径,所以圆C的方程为.【小问2详解】根据题意,已知、是互相垂直的两条直线,分2种情况讨论:,当直线,,其中一条直线斜率为0时.另一条斜率不存在不妨令的斜率为0,此时,四边形APBQ的面积,当直线,斜率均存在时,设直线的斜率为则其方程为,圆心到直线的距离为,于是,又的方程为同理,所以四边形APBQ的面积,当且仅当即时,等号成立因为综上所述,四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级语文上册 重点课文 6 皇帝的新装教学设计 新人教版
- 2024秋八年级英语上册 Module 3 Sports Unit 3 Language in use教学设计(新版)外研版
- 13要下雨了(教学设计)-2024-2025学年语文一年级下册统编版
- 2023六年级语文下册 第二单元 6 骑鹅旅行记(节选)配套教学设计 新人教版
- Unit 5(第1课时 Section A 1a-1d)(教学设计)七年级英语上册同步高效课堂(人教版2024)
- 10 的认识(教学设计)-2024-2025学年一年级上册数学沪教版
- 7《大小多少》教学设计-2024-2025学年统编版(五四制)语文一年级上册
- 个人酒店合作经营协议5篇
- Unit 5 Lesson 25 I Want to Be a Teacher2024-2025学年八年级英语上册同步教学设计(冀教版)河北专版
- 七年级生物下册 第二章 第一节 物质运输的载体第一课时教学设计 (新版)冀教版
- 2025宁夏电力投资集团社会招聘108人笔试参考题库附带答案详解
- 山东省临沂市2024-2025学年七年级下学期3月月考地理试题(原卷版+解析版)
- 江西省南昌中学2024-2025学年高一下学期3月月考地理试题(原卷版+解析版)
- 《水上客运重大事故隐患判定指南(暂行)》知识培训
- 落实“215”专项行动:xx小学体育“加速度”
- 老年人60岁以上C1驾考三力测试题及答案
- 2020-2021学年江苏省南京外国语河西初级中学等三校七年级(下)期中数学试卷
- 2025年慢性阻塞性肺疾病全球创议GOLD指南修订解读课件
- 10万吨橡塑一体化能源再生项目环评报告表
- (完整版)海运提单(样本).docx
- 计算机软件技术专业《顶岗实习》课程标准
评论
0/150
提交评论