版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市延安实验初级中学2025届八年级数学第一学期期末质量跟踪监视模拟试题跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.近期,受不良气象条件影响,我市接连出现重污染天气,细颗粒物(PM2.5)平均浓度持续上升,严重威胁人民群众的身体健康,PM2.5是直径小于或等于2.5微米(1微米相当于1毫米的千分之一)的颗粒物,可直接进入肺部把2.5微米用科学记数法表示为()A.2.5×10﹣6米 B.25×10﹣5米C.0.25×10﹣4米 D.2.5×10﹣4米2.下列计算中正确的是()A. B. C. D.3.下列各组线段中,能够组成直角三角形的一组是(
)A.1,2,3 B.2,3,4 C.4,5,6 D.1,,4.若关于的方程的解为正数,则的取值范围是()A. B. C.且 D.且5.一个三角形任意一边上的高都是这边上的中线,则对这个三角形最准确的判断是()A.等腰三角形 B.直角三角形 C.正三角形 D.等腰直角三角形6.如图1,在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图2所示的长方形.通过计算剪拼前后阴影部分的面积,验证了一个等式,这则个等式是()A.(a+b)(a﹣b)=a2﹣b2 B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2 D.a(a﹣b)=a2﹣ab7.下列计算中,正确的是()A.x3•x2=x4 B.x(x-2)=-2x+x2C.(x+y)(x-y)=x2+y2 D.3x3y2÷xy2=3x48.如图,在中,边的中垂线与的外角平分线交于点,过点作于点,于点.若,.则的长度是()A.1 B.2 C.3 D.49.下列命题:①如果,那么;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有()A.1 B.2 C.3 D.410.下列图形中是轴对称图形的有()A. B. C. D.11.已知,则化简的结果是().A.4 B.6-2x C.-4 D.2x-612.如图,△ABC的外角∠ACD的平分线CP与∠ABC平分线BP交于点P,若∠BPC=40°,则∠CAP的度数是()A.30°; B.40°; C.50°; D.60°.二、填空题(每题4分,共24分)13.若有意义,则的取值范围是__________.14.若关于,的方程组的解是,则__________.15.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.16.在△ABC中,已知AB=15,AC=11,则BC边上的中线AD的取值范围是____.17.比较大小:_________(填“>”或“<”)18.分解因式___________三、解答题(共78分)19.(8分)如图,工厂和工厂,位于两条公路之间的地带,现要建一座货物中转站,若要求中转站到两条公路的距离相等,且到工厂和工厂的距离也相等,请用尺规作出点的位置.(不要求写做法,只保留作图痕迹)20.(8分)如图1,等腰直角三角形ABP是由两块完全相同的小直角三角板ABC、EFP(含45°)拼成的,其中△ABC的边BC在直线上,AC⊥BC且AC=BC;△EFP的边FP也在直线上,边EF与边AC重合,EF⊥FP且EF=FP.(1)将三角板△EFP沿直线向左平移到图2的位置时,EP交AC于点Q,连接AP、BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;(2)将三角板△EFP沿直线向左平移到图3的位置时,EP的延长线交AC的延长线于点Q,连接AP、BQ.你认为(1)中猜想的关系还成立吗?请写出你的结论(不需证明)21.(8分)口罩是疫情防控的重要物资,某药店销售A、B两种品牌口罩,购买2盒A品牌和3盒B牌的口罩共需480元;购买3盒A品牌和1盒B牌的口罩共需370元.(1)求这两种品牌口罩的单价.(2)学校开学前夕,该药店对学生进行优恵销售这两种口罩,具体办法如下:A品牌口罩按原价的八折销售,B品牌口罩5盒以内(包含5盒)按原价销售,超出5盒的部分按原价的七折销售,设购买x盒A品牌的口罩需要的元,购买x盒B品牌的口罩需要元,分别求出、关于x的函数关系式.(3)当需要购买50盒口罩时,买哪种品牌的口罩更合算?22.(10分)如图,已知:△ABC中,AB=AC,M是BC的中点,D、E分别是AB、AC边上的点,且BD=CE.求证:MD=ME.23.(10分)如图,∠1+∠2=180°,∠B=∠E,试猜想AB与CE之间有怎样的位置关系?并说明理由.24.(10分)如图,在△ABC中,CD是高,点E、F、G分别在BC、AB、AC上且EF⊥AB,∠1=∠2,试判断DG与BC的位置关系,并说明理由.25.(12分)阅读理解:关于x的方程:x+=c+的解为x1=c,x2=;x﹣=c﹣(可变形为x+=c+)的解为x1=c,x2=;x+=c+的解为x1=c,x2=Zx+=c+的解为x1=c,x2=Z.(1)归纳结论:根据上述方程与解的特征,得到关于x的方程x+=c+(m≠0)的解为.(2)应用结论:解关于y的方程y﹣a=﹣26.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.
参考答案一、选择题(每题4分,共48分)1、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定;【详解】∵1微米=0.000001米=1×米,∴2.5微米=2.5×1×米=2.5×米;故选:A.【点睛】本题主要考查了科学记数法的表示,掌握科学记数法是解题的关键.2、D【分析】运用幂的运算法则即可进行判断.【详解】A中和不是同底数幂,也不是同类项,不能合并,A错;同底数幂相除,底数不变,指数相减,B错;同底数幂相乘,底数不变,指数相加,C错;幂的乘方,底数不变,指数相乘,D对故本题正确选项为D.【点睛】本题考查了幂的运算法则,掌握相关知识点是解决本类题的关键.3、D【解析】试题分析:A.,不能组成直角三角形,故错误;B.,不能组成直角三角形,故错误;C.,不能组成直角三角形,故错误;D.,能够组成直角三角形,故正确.故选D.考点:勾股定理的逆定理.4、D【详解】去分母得,m﹣1=2x﹣2,解得,x=,∵方程的解是正数,∴>0,解这个不等式得,m>﹣1,∵m=1时不符合题意,∴m≠1,则m的取值范围是m>﹣1且m≠1.故选D.【点睛】解题关键是要掌握方程的解的定义,使方程成立的未知数的值叫做方程的解.要注意分母不能为0,这个条件经常忘掉.5、C【解析】试题分析:根据等腰三角形的三线合一的性质求解即可.根据等腰三角形的三线合一的性质,可得三边相等,则对这个三角形最准确的判断是正三角形.故选C.考点:等腰三角形的性质点评:等腰三角形的三线合一的性质是初中数学的重点,贯穿于整个初中数学的学习,是中考常见题,一般难度不大,需熟练掌握.6、A【分析】分别计算出两个图形中阴影部分的面积即可.【详解】图1阴影部分面积:a2﹣b2,图2阴影部分面积:(a+b)(a﹣b),由此验证了等式(a+b)(a﹣b)=a2﹣b2,故选:A.【点睛】此题主要考查了平方差公式的几何背景,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.7、B【分析】根据同底数幂的乘法、整式的乘法和除法计算即可.【详解】解:A、x3•x2=x5,错误;B、x(x-2)=-2x+x2,正确;C、(x+y)(x-y)=x2-y2,错误;D、3x3y2÷xy2=3x2,错误;故选:B.【点睛】本题考查了同底数幂的乘法、单项式乘多项式、平方差公式和单项式的除法运算,熟练掌握运算法则是解答本题的关键.8、A【分析】连接AP、BP,如图,根据线段垂直平分线的性质可得AP=BP,根据角平分线的性质可得PE=PD,进一步即可根据HL证明Rt△AEP≌Rt△BDP,从而可得AE=BD,而易得CD=CE,进一步即可求得CE的长.【详解】解:连接AP、BP,如图,∵PQ是AB的垂直平分线,∴AP=BP,∵CP平分∠BCE,,,∴PE=PD,∴Rt△AEP≌Rt△BDP(HL),∴AE=BD,∵CD=,CE=,PE=PD,∴CD=CE,设CE=CD=x,∵,,∴,解得:x=1,即CE=1.故选:A.【点睛】本题考查了线段垂直平分线的性质、角平分线的性质、直角三角形全等的判定和勾股定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.9、B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果,那么互为相反数或,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;
平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B.【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.11、A【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【详解】解:因为,所以,,则,故选:A.【点睛】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质.12、C【解析】过点P作PE⊥BD于点E,PF⊥BA于点F,PH⊥AC于点H,∵CP平分∠ACD,BP平分∠ABC,∴PE=PH,PE=PF,∠PCD=∠ACD,∠PBC=∠ABC,∴PH=PF,∴点P在∠CAF的角平分线上,∴AP平分∠FAC,∴∠CAP=∠CAF.∵∠PCD=∠BPC+∠PBC,∴∠ACD=2∠BPC+2∠PBC,又∵∠ACD=∠ABC+∠BAC,∠ABC=2∠PBC,∠BPC=40°,∴∠ABC+∠BAC=∠ABC+80°,∴∠BAC=80°,∴∠CAF=180°-80°=100°,∴∠CAP=100°×=50°.故选C.点睛:过点P向△ABC三边所在直线作出垂线段,这样综合应用“角平分线的性质与判定”及“三角形外角的性质”即可结合已知条件求得∠CAP的度数.二、填空题(每题4分,共24分)13、一切实数【分析】根据使立方根有意义的条件解答即可.【详解】解:立方根的被开方数可以取一切实数,所以可以取一切实数.故答案为:一切实数.【点睛】本题考查使立方根有意义的条件,理解掌握该知识点是解答关键.14、1【分析】把代入方程组可求解到m、n的值,之后代入计算即可求解本题.【详解】解:把代入方程组得,;故答案为:1.【点睛】本题考查的是方程组的定义,正确理解题意并计算即可.15、小李.【详解】解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.故答案为:小李.16、2<AD<1【分析】延长AD至E,使得DE=AD,连接CE,然后根据“边角边”证明△ABD和△ECD全等,再根据全等三角形对应边相等可得AB=CE,然后利用三角形任意两边之和大于第三边,两边之和小于第三边求出AE的取值范围,从而得解.【详解】解:如图,延长AD至E,使得DE=AD,连接CE,∵AD是△ABC的中线,∴BD=CD,在△ABD和△ECD中,∵AD=DE,∠ADB=∠EDC,BD=CD∴△ABD≌△ECD(SAS),∴AB=CE,∵AB=15,∴CE=15,∵AC=11,∴在△ACE中,15-11=4,15+11=26,∴4<AE<26,∴2<AD<1;故答案为:2<AD<1.【点睛】本题既考查了全等三角形的性质与判定,也考查了三角形的三边的关系,解题的关键是将中线AD延长得AD=DE,构造全等三角形,然后利用三角形的三边的关系解决问题.17、>【解析】因为分母相同所以比较分子的大小即可,可以估算的整数部分,然后根据整数部分即可解决问题.【详解】∵,∴1>1,∴.故答案为:>.【点睛】本题考查了实数大小的比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.当分母相同时比较分子的大小即可.18、【分析】原式提取公因式,再利用完全平方公式分解即可.【详解】原式=2x(y2+2y+1)=2x(y+1)2,故答案为2x(y+1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.三、解答题(共78分)19、见解析【分析】结合角平分线的性质及作法以及线段垂直平分线的性质及作法进一步分析画图即可.【详解】如图所示,点P即为所求:【点睛】本题主要考查了尺规作图的实际应用,熟练掌握相关方法是解题关键.20、(1),;证明过程见解析(2)成立【分析】(1)要证BQ=AP,可以转化为证明,要证明BQ⊥AP,可以证明∠QGA=,只要证出∠CBQ=∠CAP,∠GAQ+∠AQG=即可证出;(2)类比(1)的证明过程,就可以得到结论仍成立.【详解】(1)BQ=AP,BQ⊥AP,理由:∵EF=FP,EF⊥FP,∴∠EPF=,又∵AC⊥BC,∴∠CQP=∠CPQ=,∴CQ=CP,在和中,,∴(SAS),∴BQ=AP.如下图,延长BQ交AP与点G,
∵,∴∠CBQ=∠CAP,在Rt△BCQ中,∠CBQ+∠CQB=,又∠CQB=∠AQG,∴∠GAQ+∠AQG=∠CBQ+∠CQB=,∴∠QGA=,∴BQ⊥AP,故BQ=AP,BQ⊥AP.(2)成立;理由:∵,∴,又∵,∴,∴CQ=CP,在和中,,
∴(SAS),∴BQ=AP,延长QB交AP于点N,如下图所示:
则,∵,∴,∵在Rt中,,又∵,∴,∴,∴,故,.【点睛】本题考查等腰三角形的性质、全等三角形的性质和判定及三角形的内角和定理等知识,解题的关键是证明三角形全等.21、(1)A,B两种品牌口罩单价分别为90元和100元;(2),;(3)买A品牌更合算.【分析】(1)设A,B两种品牌口罩单价分别为,元,根据条件建立方程组求出其解即可;(2)由(1)的结论,根据总价单价数量就可以得出关系式;(3)将代入求解即可.【详解】解:(1)设A,B两种品牌口罩单价分别为,元,由题意得,解得.答:A,B两种品牌口罩单价分别为90元和100元.(2)由题意得,当时,,当时,,.(3)当时,(元),(元),,买A品牌更合算.【点睛】本题考查了列二元一次方程组解实际问题的运用,熟悉相关性质,读懂题意是解题的关键.22、证明见解析.【解析】试题分析:根据等腰三角形的性质可证∠DBM=∠ECM,可证△BDM≌△CEM,可得MD=ME,即可解题.试题解析:证明:△ABC中,∵AB=AC,∴∠DBM=∠ECM.∵M是BC的中点,∴BM=CM.在△BDM和△CEM中,∵,∴△BDM≌△CEM(SAS).∴MD=ME.考点:1.等腰三角形的性质;2.全等三角形的判定与性质.23、AB//CE,理由见解析【解析】利用平行线的性质及判定即可得出结论.解:AB//CE,理由如下:∵∠1+∠2=180°,∴DE//BC(同旁内角互补,两直线平行),∴∠ADF=∠B(两直线平行,同位角相等),∵∠B=∠E,∴∠ADF=∠E,∴AB//CE(内错角相等,两直线平行).24、见解析【解析】试题分析:根据垂直的定义可得∠EFB=∠CDB=90°,然后根据同位角相等两直线平行可得CD∥E
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东常规跨径公路钢桥典型安装工艺示意
- 2023年啶虫咪投资申请报告
- Python程序设计实践- 习题及答案 ch15 实验11 调试和异常处理
- 类文本阅读-传记-2021年高考语文复习学案
- 专项24-圆周角定理-重难点题型
- 高级硬件工程师工作岗位职责说明(33篇)
- 快递工作总结
- 语法专题八 情态动词【考点精讲精练】-2023年中考语法一点通(学生版)
- 千与千寻观后感15篇
- 横店影视城导游词(31篇)
- 英语-浙江省湖州、衢州、丽水2024年11月三地市高三教学质量检测试卷试题和答案
- 劳动技术教案
- 广东省深圳市2023-2024学年高一上学期生物期中试卷(含答案)
- 第七章 立体几何与空间向量综合测试卷(新高考专用)(学生版) 2025年高考数学一轮复习专练(新高考专用)
- 大学美育(同济大学版)学习通超星期末考试答案章节答案2024年
- 中国急性缺血性卒中诊治指南(2023版)
- 福建省残疾人岗位精英职业技能竞赛(美甲师)参考试题及答案
- 在线学习新变革课件 2024-2025学年人教版(2024)初中信息技术七年级全一册
- 劳动法律学习试题
- 航空器系统与动力装置学习通超星期末考试答案章节答案2024年
- 中考英语过去将来时趣味讲解动态课件(43张课件)
评论
0/150
提交评论