2025届黑龙江省哈尔滨尚志市数学八上期末监测试题含解析_第1页
2025届黑龙江省哈尔滨尚志市数学八上期末监测试题含解析_第2页
2025届黑龙江省哈尔滨尚志市数学八上期末监测试题含解析_第3页
2025届黑龙江省哈尔滨尚志市数学八上期末监测试题含解析_第4页
2025届黑龙江省哈尔滨尚志市数学八上期末监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届黑龙江省哈尔滨尚志市数学八上期末监测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.点M(3,-4)关于y轴的对称点的坐标是()A.(3,4) B.(-3,4) C.(-3,-4) D.(-4,3)2.下列命题中是真命题的是()A.平面内,过一点有且只有一条直线与已知直线平行B.,,,,…等五个数都是无理数C.若,则点在第二象限D.若三角形的边、、满足:,则该三角形是直角三角形3.如图,在等边中,,将线段沿翻折,得到线段,连结交于点,连结、以下说法:①,②,③,④中,正确的有()A.个 B.个 C.个 D.个4.下列图形中是轴对称图形的有()A. B. C. D.5.下列命题是真命题的是()A.相等的角是对顶角 B.一个角的补角是钝角C.如果ab=0,那么a+b=0 D.如果ab=0,那么a=0或b=06.用四舍五入法将精确到千分位的近似数是()A. B. C. D.7.如图,在中,,是的两条中线,是上一个动点,则下列线段的长度等于最小值的是()A.2 B. C.1 D.8.如图,中,,,.设长是,下列关于的四种说法:①是无理数;②可以用数轴上的一个点来表示;③是13的算术平方根;④.其中所有正确说法的序号是()A.①② B.①③C.①②③ D.②③④9.如图,在,,以为圆心,任意长为半径画弧,分别交,于点,,再分别以,,为圆心,大于长为半径画弧,两弧交于点,作弧线,交于点.已知,,则的长为()A. B. C. D.10.若(a+b)2=4,(a-b)2=6,则a2+b2的值为()A.25 B.16 C.5 D.411.已知是直线为常数)上的三个点,则的大小关系是()A. B. C. D.12.顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形二、填空题(每题4分,共24分)13.小华将升旗的绳子从旗杆的顶端拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆的处,发现此时绳子末端距离地面,则旗杆的高度为______.14.已知点P(a+3,2a+4)在x轴上,则点P的坐标为________.15.当________时,二次根式有意义.16.今天数学课上,老师讲了单项式乘以多项式,放学回到家,小明拿出课堂笔记本复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被墨水弄污了,你认为□处应填写_________.17.如图在3×3的正方形网格中有四个格点A.B.C.D,以其中一点为原点,网格线所在直线为坐标轴建立直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是____点.18.若,,则______.三、解答题(共78分)19.(8分)已知,.(1)求的值;(2)求的值;(3)求的值.20.(8分)如图是一个正方体展开图,已知正方体相对两面的代数式的值相等;(1)求a、b、c的值;(2)判断a+b﹣c的平方根是有理数还是无理数.21.(8分)因式分解:(1)(2)22.(10分)如图,中,,,,若点从点出发以每秒的速度向点运动,设运动时间为秒.(1)若点恰好在的角平分线上,求出此时的值;(2)若点使得时,求出此时的值.23.(10分)如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.24.(10分)一群女生住间宿舍,每间住4人,剩下18人无房住,每间住6人,有一间宿舍住不满,但有学生住.(1)用含的代数式表示女生人数.(2)根据题意,列出关于的不等式组,并求不等式组的解集.(3)根据(2)的结论,问一共可能有多少间宿舍,多少名女生?25.(12分)如图,已知∠AOB和点C,D.求作:点P,使得点P到∠AOB两边的距离相等,且PC=PD.(要求:用直尺与圆规作图,保留作图痕迹)26.如图,把一张长方形纸片ABCD折叠起来,使其对角顶点A与C重合,D与G重合.若长方形的长BC为8,宽AB为4,求:(1)CF的长;(2)求三角形GED的面积.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变,即点P(x,y)关于y轴的对称点P′的坐标是(−x,y).【详解】∵点M(3,−4),∴关于y轴的对称点的坐标是(−3,−4).故选:C.【点睛】此题主要考查了关于x轴、y轴对称点的坐标特点,熟练掌握关于坐标轴对称的特点是解题关键.2、D【分析】根据平行公理、无理数的概念、点坐标特征、勾股定理的逆定理判断即可.【详解】解:A、在同一平面内,过直线外一点有且只有一条直线与已知直线平行,本选项说法是假命题;B、,,,,…中只有,…两个数是无理数,本选项说法是假命题;C、若,则点在第一象限,本选项说法是假命题;D、,化简得,则该三角形是直角三角形,本选项说法是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3、D【分析】由△ABD≌△ACE,△ACE≌△ACM,△ABC是等边三角形可以对①②进行判断,由AC垂直平分EM和直角三角形的性质可对③进行判断,由△ADM是等边三角形可对④进行判断.【详解】解:∵△ABC是等边三角形,∴AB=AC,∠B=∠BAC=∠ACB=60°,∵BD=CE,∴△ABD≌△ACE(SAS)∴AD=AE,∠BAD=∠CAE∵线段沿翻折,∴AE=AM,∠CAE=∠CAM,∴,故①正确,∴△ACE≌△ACM(SAS)∴∠ACE=∠ACM=60°,故②正确,由轴对称的性质可知,AC垂直平分EM,∴∠CNE=∠CNM=90°,∵∠ACM=60°,∴∠CMN=30°,∴在Rt△CMN中,,即,故③正确,∵∠BAD=∠CAE,∠CAE=∠CAM,∴∠BAD=∠CAM,∵∠∠BAD+∠CAD=60°,∴∠CAM+∠CAD=60°,即∠DAM=60°,又AD=AM∴△ADM为等边三角形,∴故④正确,所以正确的有4个,故答案为:D.【点睛】本题考查了全等三角形的判定和性质、等边三角形的判定和性质、直角三角形的性质、线段垂直平分线的判定和性质、轴对称的性质等知识,解题的关键是灵活运用上述几何知识进行推理论证.4、B【解析】根据轴对称图形的定义,逐一判断选项,即可得到答案.【详解】A.是中心对称图形,不是轴对称图形,不符合题意,B.是轴对称图形,符合题意,C.是中心对称图形,不是轴对称图形,不符合题意,D.既不是中心对称图形,也不是轴对称图形,不符合题意,故选B.【点睛】本题主要考查轴对称图形的定义,掌握轴对称图形的定义,是解题的关键.5、D【分析】根据对顶角的性质、补角的概念、有理数的乘法法则判断即可.【详解】解:相等的角不一定是对顶角,A是假命题;钝角的补角不是钝角,B是假命题;如果ab=0,那么a=0或b=0,C是假命题,D是真命题;故选D.【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫假命题.判断命题的真假关键是要熟悉课本中的性质定理.6、B【分析】根据精确度的定义即可得出答案.【详解】精确到千分位的近似数是0.005,故答案选择B.【点睛】本题考查的是近似数,属于基础题型,需要熟练掌握相关基础知识.7、B【分析】根据轴对称的性质可知,点B关于AD对称的点为点C,故当P为CE与AD的交点时,BP+EP的值最小.【详解】解:∵△ABC是等边三角形,AD是BC边上的中线,∴AD⊥BC∴点B关于AD对称的点为点C,∴BP=CP,∴当P为CE与AD的交点时,BP+EP的值最小,即BP+EP的最小值为CE的长度,∵CE是AB边上的中线,∴CE⊥AB,BE=,∴在Rt△BCE中,CE=,故答案为:B.【点睛】本题考查了等边三角形的性质、轴对称的性质,解题的关键是找到当P为CE与AD的交点时,BP+EP的值最小.8、C【分析】根据勾股定理即可求出答案.【详解】解:∵∠ACB=90°,∴在RtABC中,m=AB==,故①②③正确,∵m2=13,9<13<16,∴3<m<4,故④错误,故选:C.【点睛】本题考查勾股定理及算术平方根、无理数的估算,解题的关键是熟练运用勾股定理,本题属于基础题型.9、C【分析】直接利用基本作图方法得出AE是∠CAB的平分线,进而结合全等三角形的判定与性质得出AC=AD,再利用勾股定理得出AC的长.【详解】过点E作ED⊥AB于点D,由作图方法可得出AE是∠CAB的平分线,∵EC⊥AC,ED⊥AB,∴EC=ED=3,在Rt△ACE和Rt△ADE中,,∴Rt△ACE≌Rt△ADE(HL),∴AC=AD,∵在Rt△EDB中,DE=3,BE=5,∴BD=4,设AC=x,则AB=4+x,故在Rt△ACB中,AC2+BC2=AB2,即x2+82=(x+4)2,解得:x=1,即AC的长为:1.故答案为:C.【点睛】此题主要考查了基本作图以及全等三角形的判定与性质、勾股定理等知识,正确得出BD的长是解题关键.10、C【分析】由可得答案.【详解】解:①,②①+②得:故选C.【点睛】本题考查了完全平方公式的应用,掌握两个完全平方公式的结合变形是解题的关键.11、A【分析】由为常数)可知k=-5<0,故y随x的增大而减小,由,可得y1,y2,y3的大小关系.【详解】解:∵k=-5<0,∴y随x的增大而减小,∵,∵,故选:A.【点睛】本题主要考查一次函数的增减性,熟练掌握一次函数的增减性是解题的关键.12、C【分析】根据三角形的中位线定理,得新四边形各边都等于原四边形的对角线的一半,进而可得连接对角线相等的四边形各边中点得到的四边形是菱形.【详解】解:如图,矩形中,分别为四边的中点,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题主要考查了矩形的性质、菱形的判定,以及三角形中位线定理,关键是掌握三角形的中位线定理及菱形的判定.二、填空题(每题4分,共24分)13、1【分析】过点C作CD⊥AB于点D,设旗杆的高度为xm,在中利用勾股定理即可得出答案.【详解】如图,过点C作CD⊥AB于点D,则设旗杆的高度为xm,则在中,解得即旗杆的高度为1m故答案为:1.【点睛】本题主要考查勾股定理,掌握勾股定理的内容,构造出直角三角形是解题的关键.14、(1,0)【分析】直接利用x轴上点的坐标特点得出a的值,进而得出答案.【详解】解:∵该点在x轴上∴2a+4=0∴a=-2∴点P的坐标为(1,0)故答案为:(1,0).【点睛】此题考查点的坐标,正确得出a的值是解题关键.15、≤3【解析】根据二次根式有意义的条件:被开方数为非负数即可得答案.【详解】∵二次根式有意义,∴6-2x≥0,解得:x≤3.故答案为:≤3【点睛】本题考查二次根式有意义的条件,要使二次根式有意义,被开方数大于等于0;熟记二次根式有意义的条件是解题关键.16、3xy【解析】试题解析:根据题意,得故答案为17、B点【解析】以每个点为原点,确定其余三个点的坐标,找出满足条件的点,得到答案.【详解】解:当以点B为原点时,如图,

A(-1,-1),C(1,-1),

则点A和点C关于y轴对称,符合条件.

故答案为:B点.【点睛】本题考查关于x轴、y轴对称的点的坐标和坐标确定位置,掌握平面直角坐标系内点的坐标的确定方法和对称的性质是解题的关键.18、15【分析】根据同底数幂乘法法则来求即可.【详解】解:3×5=15【点睛】本题考查的是同底数幂的乘法法则,同底数幂相乘,底数不变指数相加.三、解答题(共78分)19、(1)19;(2);(3)【分析】(1)根据题意及完全平方公式可直接进行代值求解;(2)先对代数式进行展开,然后代值求解即可;(3)先对分式进行通分运算,然后代值求解即可.【详解】解:由,,可得:(1),=19;(2);(3)由(1)得:=19,,解得,.【点睛】本题主要考查完全平方公式、分式的减法及平方根,熟练掌握完全平方公式、分式的减法及平方根的运算是解题的关键.20、(1)a=3,b=1,c=±1;(1)无理数.【分析】(1)根据正方体相对两面的代数式的值相等可列出方程组,从而解出即可得出答案.(1)根据(1)的结果,将各组数据分别代入可判断出结果.【详解】(1)依题意,得,由①、②得方程组:,解得:,由③得:c=±1,∴a=3,b=1,c=±1.(1)当a=3,b=1,c=﹣1时a+b﹣c=3+1+1=6,a=3,b=1,c=1时a+b﹣c=3+1﹣1=1.∵和都是无理数,∴a+b﹣c的平方根是无理数.【点睛】本题考查了三元一次方程组的应用,对于本题来说,正确的列出并解出三元一次方程组是关键,注意第二问要在第一问的基础上进行.21、(1)(2)【解析】试题分析:(1)直接利用平方差公式因式分解即可;(2)提公因式a后再利用完全平方公式因式分解即可.试题解析:(1);(2).22、(1)5秒(2)秒【分析】(1)作PD⊥AB于D,依据题意求出∽,设AP为x,用x表示PC,求出x即可.(2)当P在AC上时,作PD⊥AB于D,由题意可得△ABP为等腰三角形PD也是中线,求出AD,根据∽,求出AP即可求出时间t.【详解】(1)如图,作PD⊥AB于D,∵点恰好在的角平分线上∴PC=PD∵∴∽∴∵∴设AP为x,PC=根据勾股定理得到解得:x=5∴AP=5∴t=5秒答:若点恰好在的角平分线上,t为5秒.(2)作PD⊥AB于D,∵PB+PC=AC∴PA=PB∴AD=BD=5∵∠A=∠A∠ADP=∠ACB∴∽∴∵,∴∴t=秒答:为秒.【点睛】此题主要考查了角平分线的性质、等腰三角形的性质,勾股定理及相似三角形,熟记概念是解题的关键,重点是分类讨论.23、(1)△ACP与△BPQ全等,理由详见解析;(2)PC⊥PQ,证明详见解析;(3)当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【分析】(1)利用SAS定理证明△ACP≌△BPQ;(2)根据全等三角形的性质判断线段PC和线段PQ的位置关系;(3)分△ACP≌△BPQ,△ACP≌△BQP两种情况,根据全等三角形的性质列式计算.【详解】(1)△ACP与△BPQ全等,理由如下:当t=2时,AP=BQ=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【点睛】本题属于三角形专题,考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.24、(1)人;(2);(3)可能有10间宿舍,女生58人,或者11间宿舍女生62人【分析】(1)根据题意直接列代数式,用含的代数式表示女生人数即可;(2)根据题意列出关于的不等式组,并根据解一元一次不等式组的方法求解即可;(3)根据(2)的结论可以得出或,并代入女生人数即可求出答案.【详解】解:(1)由题意可得女生人数为:()人.(2)依题意可得,解得:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论