版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.电影《我和我的祖国》讲述了普通人与国家之间息息相关的动人故事,一上映就获得全国人民的追捧,第一天票房约3亿元,以后每天票房按相同的增长率增长,前三天累计票房收入达10亿元,若设增长率为,则可列方程为()A. B.C. D.2.一副三角板如图放置,它们的直角顶点、分别在另一个三角板的斜边上,且,则的度数为()A. B. C. D.3.在数轴上表示不等式﹣2≤x<4,正确的是()A. B.C. D.4.抛物线y=x2﹣4x+1与y轴交点的坐标是()A.(0,1) B.(1,O) C.(0,﹣3) D.(0,2)5.某中学篮球队12名队员的年龄情况如下:年龄(单位:岁)1415161718人数15321则这个队队员年龄的众数和中位数分别是()A.15,16 B.15,15 C.15,15.5 D.16,156.如图,AB为⊙O的直径,C、D是⊙O上的两点,∠CDB=25°,过点C作⊙O的切线交AB的延长线于点E,则∠E的度数为()A.40° B.50° C.55° D.60°7.已知⊙O的半径为5cm,圆心O到直线l的距离为5cm,则直线l与⊙O的位置关系为()A.相交 B.相切 C.相离 D.无法确定8.如图,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值()A.2B.4C.2D.49.如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是()A.3 B.4 C.4.8 D.510.下列四张扑克牌图案,属于中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,在△ABC中,∠ACB=90°,AC=6,AB=1.现分别以点A、点B为圆心,以大于AB相同的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若将△BDE沿直线MN翻折得△B′DE,使△B′DE与△ABC落在同一平面内,连接B′E、B′C,则△B′CE的周长为_____.12.某厂前年缴税万元,今年缴税万元,如果该厂缴税的年平均增长率为,那么可列方程为______.13.某校九年1班共有45位学生,其中男生有25人,现从中任选一位学生,选中女生的概率是____.14.有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是15.若二次函数的图象开口向下,则_____0(填“=”或“>”或“<”).16.如图,直线y=k1x+b与双曲线交于A、B两点,其横坐标分别为1和5,则不等式k1x<+b的解集是▲.17.已知圆锥的侧面积为16πcm2,圆锥的母线长8cm,则其底面半径为_____cm.18.小明向如图所示的区域内投掷飞镖,阴影部分时的内切圆,已知,,,如果小明投掷飞镖一次,则飞镖落在阴影部分的概率为____________.三、解答题(共66分)19.(10分)已知:、是圆中的两条弦,连接交于点,点在上,连接,.(1)如图1,若,求证:弧弧;(2)如图2,连接,若,求证:;(3)如图3,在第(2)问的条件下,延长交圆于点,点在上,连接,若,,,求线段的长.20.(6分)如图,在由12个小正方形构造成的网格图(每个小正方形的边长均为1)中,点A,B,C.(1)画出△ABC绕点B顺时针旋转90°后得到的△A1B1C1;(2)若点D,E也是网格中的格点,画出△BDE,使得△BDE与△ABC相似(不包括全等),并求相似比.21.(6分)(1)计算:计算:6cos45°+()﹣1+(﹣1.73)0+|5﹣3|+42017×(﹣0.25)2017;(2)先化简,再求值:÷,其中满足.22.(8分)如图,在中,,点P为内一点,连接PA,PB,PC,求PA+PB+PC的最小值,小华的解题思路,以点A为旋转中心,将顺时针旋转得到,那么就将求PA+PB+PC的值转化为求PM+MN+PC的值,连接CN,当点P,M落在CN上时,此题可解.(1)请判断的形状,并说明理由;(2)请你参考小华的解题思路,证明PA+PB+PC=PM+MN+PC;(3)当,求PA+PB+PC的最小值.23.(8分)如图,抛物线与轴相交于两点(点在点的左侧),与轴相交于点.抛物线上有一点,且.(1)求抛物线的解析式和顶点坐标.(2)当点位于轴下方时,求面积的最大值.(3)①设此抛物线在点与点之间部分(含点和点)最高点与最低点的纵坐标之差为.求关于的函数解析式,并写出自变量的取值范围;②当时,点的坐标是___________.24.(8分)如图,在平面直角坐标系中,Rt△ABC三个顶点都在格点上,点A、B、C的坐标分别为A(﹣4,1),B(﹣1,1),C(﹣1,3),请解答下列问题:(1)画出△ABC关于原点O的中心对称图形△A1B1C1;(2)画出△ABC关于y轴对称图形△A2B2C2,则△A2B2C2与△A1B1C1的位置关系是.25.(10分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.26.(10分)已知抛物线与轴交于点和且过点.求抛物线的解析式;抛物线的顶点坐标;取什么值时,随的增大而增大;取什么值时,随增大而减小.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意可得出第二天的票房为,第三天的票房为,将三天的票房相加得到票房总收入,即可得出答案.【详解】解:设增长率为,由题意可得出,第二天的票房为,第三天的票房为,因此,.故选:D.【点睛】本题考查的知识点是由实际问题抽象出一元二次方程,解题的关键是读懂题意,找出等量关系式.2、C【分析】根据平行线的性质,可得∠FAC=∠C=45°,然后根据三角形外角的性质,即可求出∠1.【详解】解:由三角板可知:∠F=30°,∠C=45°∵∴∠FAC=∠C=45°∴∠1=∠FAC+∠F=75°故选:C.【点睛】此题考查的是平行线的性质和三角形外角的性质,掌握两直线平行,内错角相等和三角形的一个外角等于与它不相邻的两个内角之和是解决此题的关键.3、A【分析】根据不等式的解集在数轴上表示出来即可.【详解】解:在数轴上表示不等式﹣2≤x<4的解集为:故选:A.【点睛】此题主要考查不等式解集的表示,解题的关键是熟知不等式解集的表示方法.4、A【分析】抛物线与y轴相交时,横坐标为0,将横坐标代入抛物线解析式可求交点纵坐标.【详解】解:当x=0时,y=x2-4x+1=1,
∴抛物线与y轴的交点坐标为(0,1),
故选A.【点睛】本题考查了抛物线与坐标轴交点坐标的求法.令x=0,可到抛物线与y轴交点的纵坐标,令y=0,可得到抛物线与x轴交点的横坐标.5、C【分析】由题意直接根据众数和中位数的定义求解可得.【详解】解:∵这组数据中15出现5次,次数最多,∴众数为15岁,中位数是第6、7个数据的平均数,∴中位数为=15.5岁,故选:C.【点睛】本题考查众数与中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6、A【分析】首先连接OC,由切线的性质可得OC⊥CE,又由圆周角定理,可求得∠COB的度数,继而可求得答案.【详解】解:连接OC,∵CE是⊙O的切线,∴OC⊥CE,即∠OCE=90°,∵∠COB=2∠CDB=50°,∴∠E=90°﹣∠COB=40°.故选:A.【点睛】本题考查了切线性质,三角形的外角性质,圆周角定理,等腰三角形的性质,正确的作出辅助线是解题的关键.7、B【分析】根据圆心到直线的距离5等于圆的半径5,即可判断直线和圆相切.【详解】∵圆心到直线的距离5cm=5cm,∴直线和圆相切,故选B.【点睛】本题考查了直线与圆的关系,解题的关键是能熟练根据数量之间的关系判断直线和圆的位置关系.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.8、C【分析】过D作AE的垂线交AE于F,交AC于D′,再过D′作AP′⊥AD,由角平分线的性质可得出D′是D关于AE的对称点,进而可知D′P′即为DQ+PQ的最小值.【详解】作D关于AE的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D’,2P′D′2=AD′2,即2P′D′2=16,∴P′D′=22,即DQ+PQ的最小值为22,故答案为C.【点睛】本题考查了正方形的性质以及角平分线的性质和全等三角形的判定和性质和轴对称-最短路线问题,根据题意作出辅助线是解答此题的9、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可.【详解】解:由图可得出,整理,得,解得,(不合题意,舍去).故选:D.【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键.10、B【解析】根据中心对称图形的概念和各扑克牌的花色排列特点的求解.解答:解:A、不是中心对称图形,不符合题意;B、是中心对称图形,符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意.故选B.二、填空题(每小题3分,共24分)11、3【分析】根据线段垂直平分线的性质和折叠的性质得点B′与点A重合,BE=AE,进而可以求解.【详解】在△ABC中,∠ACB=90°,AC=6,AB=1.根据勾股定理,得:BC=2.连接AE,由作图可知:MN是线段AB的垂直平分线,∴BE=AE,BD=AD,由翻折可知:点B′与点A重合,∴△B′CE的周长=AC+CE+AE=AC+CE+BE=AC+BC=6+2=3故答案为3.【点睛】本题主要考查垂直平分线的性质定理和折叠的性质,通过等量代换把△B′CE的周长化为AC+BC的值,是解题的关键.12、【分析】由题意设该厂缴税的年平均增长率为x,根据该厂前年及今年的纳税额,即可得出关于x的一元二次方程.【详解】解:如果该厂缴税的年平均增长率为,那么可以用表示今年的缴税数,今年的缴税数为,然后根据题意列出方程.故答案为:.【点睛】本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.13、【详解】解:选中女生的概率是:.14、.【分析】分别求出从1到6的数中3的倍数的个数,再根据概率公式解答即可.【详解】有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,共有6种结果,其中卡片上的数是3的倍数的有3和6两种情况,所以从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.故答案为【点睛】考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15、<【解析】由二次函数图象的开口向下,可得.【详解】解:∵二次函数的图象开口向下,∴.故答案是:<.【点睛】考查了二次函数图象与系数的关系.二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;还可以决定开口大小,越大开口就越小.16、-2<x<-1或x>1.【解析】不等式的图象解法,平移的性质,反比例函数与一次函数的交点问题,对称的性质.不等式k1x<+b的解集即k1x-b<的解集,根据不等式与直线和双曲线解析式的关系,可以理解为直线y=k1x-b在双曲线下方的自变量x的取值范围即可.而直线y=k1x-b的图象可以由y=k1x+b向下平移2b个单位得到,如图所示.根据函数图象的对称性可得:直线y=k1x-b和y=k1x+b与双曲线的交点坐标关于原点对称.由关于原点对称的坐标点性质,直线y=k1x-b图象与双曲线图象交点A′、B′的横坐标为A、B两点横坐标的相反数,即为-1,-2.∴由图知,当-2<x<-1或x>1时,直线y=k1x-b图象在双曲线图象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.17、1【解析】圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到×1π×r×8=16π,解得r=1,然后解关于r的方程即可.【详解】解:设圆锥的底面圆的半径为r,根据题意得×1π×r×8=16π,解得r=1,所以圆锥的底面圆的半径为1cm.故答案为1.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18、【分析】利用几何概率等于阴影部分的面积与三角形的面积之比即可得出答案.【详解】,,,∴是直角三角形,设圆的半径为r,利用三角形的面积有即解得∴阴影部分的面积为∵三角形的面积为∴飞镖落在阴影部分的概率为故答案为:.【点睛】本题主要考查几何概率,掌握几何概率的求法是解题的关键.三、解答题(共66分)19、(1)见解析;(2)见解析;(3)【分析】(1)通过角度之间的关系,求得,得证,即可证明;(2)通过证明≌,求得,,可得为等边三角形,可得,,即可证明;(3)延长交于点,延长到点,使,连接,,设,先证明≌,可得,设,解得,,过点作,在中,解得,故在中,,解得,即可求出线段BG的长度.【详解】(1)证明:∵,∴∵∴∵∴∴∴(2)证明:∵,∵∴在和中∵,,∴≌∴,∴∴为等边三角形∵,∴(3)证明:延长交于点,延长到点,使,连接,设,∴∵,∴∴∵∴在和中∵,,∴≌∴∵∴∴设,∴,,在中,,,,解得,过点作,在中,∵,∴,,在中,,【点睛】本题考查了三角形和圆的综合问题,掌握圆心角定理、全等三角形的性质以及判定定理、勾股定理、锐角三角函数是解题的关键.20、(1)如图1所示:△A1B1C1,即为所求;见解析;(1)如图1所示:△BDE,即为所求,见解析;相似比为::1.【分析】(1)直接利用旋转的性质得出对应点位置进而得出答案;(1)直接利用相似图形的性质得出符合题意的答案.【详解】(1)如图1所示:△A1B1C1,即为所求;(1)如图1所示:△BDE,即为所求,相似比为::1.【点睛】本题主要考查了相似变换以及旋转变换,正确得出对应点位置是解题关键.21、(1)8;(1)-1【解析】分析:(1)根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;(1)根据分式的加减法和除法可以化简题目中的式子,然后解方程,在其解中选一个使得原分式有意义的值代入即可解答本题.详解:(1)6cos45°+()-1+(-1.73)0+|5-3|+41017×(-0.15)1017=6×+3+1+5-3+41017×(-)1017=3+3+1+5−3−1=8;(1)÷==∵∴a=0或a=1(舍去)当a=0时,原式=-1.点睛:本题考查分式的化简求值、实数的运算、殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方,解答本题的关键是明确它们各自的计算方法.22、(1)等边三角形,见解析;(2)见解析;(3)【解析】(1)根据旋转的性质可以得出,即可证明出是等边三角形;(2)绕点A顺时针旋转得到,根据的旋转的性质得到,,相加即可得;(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小,由,,可得CN垂直平分AB,再利用直角三角形的边角关系,从而求出PA+PB+PC的最小值.【详解】(1)等边三角形;绕A点顺时针旋转得到MA,,是等边三角形.(2)绕点A顺时针旋转得到,,由(1)可知,.(3)由(2)知,当C、P、M、N四点共线时,PA+PB+PC取到最小.连接BN,由旋转的性质可得:AB=AN,∠BAM=60°∴是等边三角形;,,是AB的垂直平分线,垂足为点Q,,,,即的最小值为.【点睛】本题为旋转综合题,掌握旋转的性质、等边三角形的判定及性质及理解小华的思路是关键.23、(1),顶点坐标为;(2)8;(3)①;②.【分析】(1)将点C代入表达式即可求出解析式,将表达式转换为顶点式即可写出顶点坐标;(2)根据题目分析可知,当点P位于抛物线顶点时,△ABP面积最大,根据解析式求出A、B坐标,从而得到AB长,再利用三角形面积公式计算面积即可;(3)①分三种情况:0<m≤1、1<m≤2以及m>2时,分别进行计算即可;②将h=9代入①中的表达式分别计算判断即可.【详解】解:(1)将点代入,得,解得,∴,∵,∴抛物线的顶点坐标为;(2)令,解得或,∴,,∴,当点与抛物线顶点重合时,△ABP的面积最大,此时;(3)①∵点C(0,-3)关于对称轴x=1对称的点的坐标为(2,-3),P(m,),∴当时,,当时,,当时,,综上所述,;②当h=9时,若,此时方程无解,若,解得m=4或m=-2(不合题意,舍去),∴P(4,5).【点睛】本题为二次函数综合题,需熟练掌握二次函数表达式求法及二次函数的性质,对于动点问题正确分析出所存在的所有情况是解题关键.24、(1)作图见解析;(2)关于x轴对称.【分析】(1)依据中心对称的性质,即可得到关于原点的中心对称图形△;(2)依据轴对称的性质,即可得到△,进而根据图形位置得出△与△的位置关系.【详解】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,△A2B2C2与△A1B1C1的位置关系是关于x轴对称.故答案为:关于x轴对称.【点睛】本题主要考查了利用旋转变换以及轴对称变换作图,掌握轴对称性的性质以及中心对称的性质是解决问题的关键.25、(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°,∠CED=35°【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 管道工程图画法中的管道流体流动方向的标记
- 采购合同预付款的合同风险控制3篇
- 采购招标文件撰写技巧3篇
- 采购法务与合同的合同谈判技巧3篇
- 采购合同谈判的技巧指南3篇
- 采购合同类型的操作步骤3篇
- 消费者权益保护社会共治-洞察分析
- 采购委托代理合作方案3篇
- 采购合同范本样式样式编写3篇
- 2024年智慧家居房产买卖委托中介合作协议3篇
- GB/T 10395.28-2024农业机械安全第28部分:移动式谷物螺旋输送机
- 劳务派遣技术服务方案
- 部编版小学三年级语文下册《陶罐和铁罐》课件
- ISO TR 15608-2017-中英文版完整
- 2024年度-全新新课标培训
- 法学概论(第七版) 课件全套 谷春德 第1-7章 我国社会主义法的基本理论 - 国际法
- MOOC 模拟电子技术基础-华中科技大学 中国大学慕课答案
- 中考语文-排序题(30题含答案)-阅读理解及答案
- (2024年)特种设备安全法律法规培训课件
- 2024年车辆钳工(技师)考试复习题库(含答案)
- 《国际贸易单证实务》课件-项目四 缮制海运提单
评论
0/150
提交评论