2025届湖南省衡阳八中高一下数学期末达标检测试题含解析_第1页
2025届湖南省衡阳八中高一下数学期末达标检测试题含解析_第2页
2025届湖南省衡阳八中高一下数学期末达标检测试题含解析_第3页
2025届湖南省衡阳八中高一下数学期末达标检测试题含解析_第4页
2025届湖南省衡阳八中高一下数学期末达标检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届湖南省衡阳八中高一下数学期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知向量,,且与的夹角为,则()A. B.2 C. D.142.对于一个给定的数列,定义:若,称数列为数列的一阶差分数列;若,称数列为数列的二阶差分数列.若数列的二阶差分数列的所有项都等于,且,则()A.2018 B.1009 C.1000 D.5003.如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与灯塔B的距离为()A.akm B.akmC.akm D.2akm4.若,则()A. B. C. D.5.某高校进行自主招生,先从报名者中筛选出400人参加笔试,再按笔试成绩择优选出100人参加面试.现随机抽取了24名笔试者的成绩,统计结果如下表所示.分数段[60,65)[65,70)[70,75)[75,80)[80,85)[85,90]人数234951据此估计允许参加面试的分数线大约是()A.90 B.85C.80 D.756.已知函数则的是A. B. C. D.7.如图,两个正方形和所在平面互相垂直,设、分别是和的中点,那么:①;②平面;③;④、异面.其中不正确的序号是()A.① B.② C.③ D.④8.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.9.已知,则点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.《张丘建算经》中女子织布问题为:某女子善于织布,一天比一天织得快,且从第2天开始,每天比前一天多织相同量的布,已知第一天织5尺布,一月(按30天计)共织390尺布,则从第2天起每天比前一天多织()尺布.A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知为第二象限角,且,则_________.12.若点在幂函数的图像上,则函数的反函数=________.13.两个实习生加工一个零件,产品为一等品的概率分别为和,则这两个零件中恰有一个一等品的概率为__________.14.如图,在中,已知点在边上,,,则的长为____________.15.等比数列中,,则公比____________.16.已知等比数列{an}为递增数列,且,则数列{an}的通项公式an=______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.为了评估A,B两家快递公司的服务质量,从两家公司的客户中各随机抽取100名客户作为样本,进行服务质量满意度调查,将A,B两公司的调查得分分别绘制成频率分布表和频率分布直方图.规定分以下为对该公司服务质量不满意.分组频数频率0.4合计(Ⅰ)求样本中对B公司的服务质量不满意的客户人数;(Ⅱ)现从样本对A,B两个公司服务质量不满意的客户中,随机抽取2名进行走访,求这两名客户都来自于B公司的概率;(Ⅲ)根据样本数据,试对两个公司的服务质量进行评价,并阐述理由.18.已知圆.(1)求圆的半径和圆心坐标;(2)斜率为的直线与圆相交于、两点,求面积最大时直线的方程.19.设等差数列满足.(1)求数列的通项公式;(2)若成等比数列,求数列的前项和.20.已知圆,点,直线.(1)求与直线l垂直,且与圆C相切的直线方程;(2)在x轴上是否存在定点B(不同于点A),使得对于圆C上任一点P,为常数?若存在,试求这个常数值及所有满足条件的点B的坐标;若不存在,请说明理由.21.记公差不为零的等差数列{an}的前n项和为Sn,已知=2,是与的等比中项.(Ⅰ)求数列{an}的通项公式;(Ⅱ)求数列{}的前n项和Tn.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】

首先求出、,再根据计算可得;【详解】解:,,又,且与的夹角为,所以.故选:A【点睛】本题考查平面向量的数量积以及运算律,属于基础题.2、C【解析】

根据题目给出的定义,分析出其数列的特点为等差数列,利用等差数列求解.【详解】依题意知是公差为的等差数列,设其首项为,则,即,利用累加法可得,由于,即解得,,故.选C.【点睛】本题考查新定义数列和等差数列,属于难度题.3、B【解析】

先根据题意确定的值,再由余弦定理可直接求得的值.【详解】在中知∠ACB=120°,由余弦定理得AB2=AC2+BC2-2AC·BCcos120°=2a2-2a2×=3a2,∴AB=a.故选:B.【点睛】本题主要考查余弦定理的应用,属于基础题.4、D【解析】.分子分母同时除以,即得:.故选D.5、C【解析】

根据题意可从样本中数据的频率考虑,即按成绩择优选择频率为的,根据题意得到所选的范围后再求出对应的分数.【详解】由题意得,参加面试的频率为,结合表中的数据可得,样本中[80,90]的频率为,由样本估计总体知,分数线大约为80分.故选C.【点睛】本题考查统计图表的应用,解题的关键是理解题意,同时还要正确掌握统计中的常用公式,属于基础题.6、D【解析】

根据自变量的范围确定表达式,从里往外一步步计算即可求出.【详解】因为,所以,因为,所以==3.【点睛】主要考查了分段函数求值问题,以及对数的运算,属于基础题.对于分段函数求值问题,一定要注意根据自变量的范围,选择正确的表达式代入求值.7、D【解析】

取的中点,连接,,连接,,由线面垂直的判定和性质可判断①;由三角形的中位线定理,以及线面平行的判定定理可判断②③④.【详解】解:取的中点,连接,,连接,,正方形和所在平面互相垂直,、分别是和的中点,可得,,平面,可得,故①正确;由为的中位线,可得,且平面,可得平面,故②③正确,④错误.故选:D.【点睛】本题主要考查空间线线和线面的位置关系,考查转化思想和数形结合思想,属于基础题.8、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.9、B【解析】∵,∴,,,∴,∴点在第二象限,故选B.点睛:本题主要考查了由三角函数值的符号判断角的终边位置,属于基础题;三角函数值符号记忆口诀记忆技巧:一全正、二正弦、三正切、四余弦(为正).即第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、B【解析】由题可知每天织的布的多少构成等差数列,其中第一天为首项,一月按30天计可得,从第2天起每天比前一天多织的即为公差.又,解得.故本题选B.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解析】

先由求出的值,再利用同角三角函数的基本关系式求出、即可.【详解】因为为第二象限角,且,所以,解得,再由及为第二象限角可得、,此时.故答案为:.【点睛】本题主要考查两角差的正切公式及同角三角函数的基本关系式的应用,属常规考题.12、【解析】

根据函数经过点求出幂函数的解析式,利用反函数的求法,即可求解.【详解】因为点在幂函数的图象上,所以,解得,所以幂函数的解析式为,则,所以原函数的反函数为.故答案为:【点睛】本题主要考查了幂函数的解析式的求法,以及反函数的求法,其中熟记反函数的求法是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】

利用相互独立事件概率乘法公式直接求解.【详解】解:两个实习生加工一个零件,产品为一等品的概率分别为和,这两个零件中恰有一个一等品的概率为:.故答案为:.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.14、【解析】

由诱导公式可知,在中用余弦定理可得BD的长。【详解】由题得,,在中,可得,又,代入得,解得.故答案为:【点睛】本题考查余弦定理和诱导公式,是基础题。15、【解析】

根据题意得到:,解方程即可.【详解】由题知:,解得:.故答案为:【点睛】本题主要考查等比数列的性质,熟练掌握等比数列的性质为解题的关键,属于简单题.16、【解析】设数列的首项为,公比为q,则,所以,由得解得,因为数列为递增数列,所以,,所以考点定位:本题考查等比数列,意在考查考生对等比数列的通项公式的应用能力三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ)3人;(Ⅱ)0.3;(Ⅲ)见解析【解析】

(Ⅰ)对B公司的服务质量不满意的频率为,即概率为0.03,易求解.(Ⅱ)共有5名客服不满意,将每种情况都列出来即可算出全来自于B公司的概率.(Ⅲ)可通过频率对比,服务质量得分的众数,服务质量得70分(或80分)以上的频率几个方面进行对比.【详解】(Ⅰ)样本中对B公司的服务质量不满意的频率为,所以样本中对B公司的服务质量不满意的客户有人.(Ⅱ)设“这两名客户都来自于B公司”为事件M.对A公司的服务质量不满意的客户有2人,分别记为,;对B公司的服务质量不满意的客户有3人,分别记为,,.现从这5名客户中随机抽取2名客户,不同的抽取的方法有,,,,,,,,,共10个;其中都来自于B公司的抽取方法有,,共3个,所以.所以这两名客户都来自于B公司的概率为.(Ⅲ)答案一:由样本数据可以估计客户对A公司的服务质量不满意的频率比对B公司服务质量不满意的频率小,由此推断A公司的服务质量比B公司的服务质量好.答案二:由样本数据可以估计A公司的服务质量得分的众数与B公司服务质量得分的众数相同,由此推断A公司的服务质量与B公司的服务质量相同.答案三:由样本数据可以估计A公司的服务质量得70分(或80分)以上的频率比B公司得70分(或80分)以上的频率小,由此推断A公司的服务质量比B公司的服务质量差.答案四:由样本数据可以估计A公司的服务质量得分的平均分比B公司服务质量得分的平均分低,由此推断A公司的服务质量比B公司的服务质量差.【点睛】此题考查概率,关键理解清楚频率分布表和频率分布直方图表示的含有,简单数据可通过列表法求概率或者可以组合数求解,属于较易题目.18、(1)圆的圆心坐标为,半径为;(2)或.【解析】

(1)将圆的方程化为标准方程,可得出圆的圆心坐标和半径;(2)设直线的方程为,即,设圆心到直线的距离,计算出直线截圆的弦长,利用基本不等式可得出的最大值以及等号成立时对应的的值,利用点的到直线的距离可解出实数的值.【详解】(1)将圆的方程化为标准方程得,因此,圆的圆心坐标为,半径为;(2)设直线的方程为,即,设圆心到直线的距离,则,且,的面积为,当且仅当时等号成立,由点到直线的距离公式得,解得或.因此,直线的方程为或.【点睛】本题考查圆的一般方程与标准方程之间的互化,以及直线截圆所形成的三角形的面积,解题时要充分利用几何法将直线截圆所得弦长表示出来,在求最值时,可利用基本不等式、函数的单调性来求解,考查分析问题和解决问题的能力,属于中等题.19、(1)或;(2).【解析】

(1)利用等差数列性质先求出的值,进而得到公差,最后写出数列的通项公式;(2)依照题意找出(1)中符合条件的数列,再用等差数列前项和公式求出数列的前项和.【详解】(1)因为等差数列,且,所以所以,又,所以,于是或设等差数列的公差为,则或,的通项公式为:或;(2)因为成等比数列,所以所以数列的前项和.【点睛】本题主要考查等差数列的性质、通项公式的求法以及等差数列前项和公式,注意分类讨论思想的应用.20、(1)或(2)存在,,【解析】

(1)先设与直线l垂直的直线方程为,再结合点到直线的距离公式求解即可;(2)先设存在,利用都有为常数及在圆上,列出等式,然后利用恒成立求解即可.【详解】解:(1)由直线.则可设与直线l垂直的直线方程为,又该直线与圆相切,则,则,故所求直线方程为或;(2)假设存在定点使得对于圆C上任一点P,为常数,则,所以,将代入上式化简整理得:对恒成立,所以,解得或,又,即,所以存在定点使得对于圆C上任一点P

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论