广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题含解析_第1页
广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题含解析_第2页
广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题含解析_第3页
广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题含解析_第4页
广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省深圳高中联考联盟2025届数学高一下期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知点,点满足线性约束条件O为坐标原点,那么的最小值是A. B. C. D.2.已知,则,,的大小顺序为()A. B. C. D.3.设是定义在上的偶函数,若当时,,则()A. B. C. D.4.设函数是定义在上的奇函数,当时,,则()A.-4 B. C. D.5.若,则t=()A.32 B.23 C.14 D.136.已知,,,则()A. B. C. D.7.如图,某人在点处测得某塔在南偏西的方向上,塔顶仰角为,此人沿正南方向前进30米到达处,测得塔顶的仰角为,则塔高为()A.20米 B.15米 C.12米 D.10米8.已知,所在平面内一点P满足,则()A. B. C. D.9.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把个面包分给个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.10.点是角终边上一点,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.终边经过点,则_____________12.在空间直角坐标系中,三棱锥的各顶点都在一个半径为的球面上,为球心,,,,,则球的体积与三棱锥的体积之比是_____.13.不论k为何实数,直线通过一个定点,这个定点的坐标是______.14.己知为数列的前项和,且,则_____.15.已知:,则的取值范围是__________.16.若是方程的解,其中,则________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数.(1)当时,,求的值;(2)令,若对任意都有恒成立,求的最大值.18.某学校高一、高二、高三的三个年级学生人数如下表

高三

高二

高一

女生

133

153

z

男生

333

453

633

按年级分层抽样的方法评选优秀学生53人,其中高三有13人.(1)求z的值;(2)用分层抽样的方法在高一中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有1名女生的概率;(3)用随机抽样的方法从高二女生中抽取2人,经检测她们的得分如下:1.4,2.6,1.2,1.6,2.7,1.3,1.3,2.2,把这2人的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过3.5的概率.19.已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.20.已知△ABC内角A,B,C的对边分别是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面积的最大值.21.已知等差数列中,,.(1)求数列的通项公式;(2)求数列的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】

点满足线性约束条件∵令目标函数画出可行域如图所示,联立方程解得在点处取得最小值:故选D【点睛】此题主要考查简单的线性规划问题以及向量的内积的问题,解决此题的关键是能够找出目标函数.2、B【解析】

由三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式求得.【详解】故选B.【点睛】本题考查三角函数的辅助角公式、余弦函数的二倍角公式,正切函数的和角公式的三角恒等变换,属于基础题.3、A【解析】

利用函数的为偶函数,可得,代入解析式即可求解.【详解】是定义在上的偶函数,则,又当时,,所以.故选:A【点睛】本题考查了利用函数的奇偶性求函数值,属于基础题.4、A【解析】

由奇函数的性质可得:即可求出【详解】因为是定义在上的奇函数,所以又因为当时,,所以,所以,选A.【点睛】本题主要考查了函数的性质中的奇偶性。其中奇函数主要有以下几点性质:1、图形关于原点对称。2、在定义域上满足。3、若定义域包含0,一定有。5、B【解析】

先计算得到,再根据得到等式解得答案.【详解】故答案选B【点睛】本题考查了向量的计算,意在考查学生对于向量运算法则的灵活运用及计算能力.6、C【解析】

利用指数函数、对数函数的单调性即可求解.【详解】为减函数,,为增函数,,为增函数,,所以,故.故选:C【点睛】本题考查了指数函数、对数函数的单调性比较指数式、对数式的大小,属于基础题.7、B【解析】

设塔底为,塔高为,根据已知条件求得以及角,利用余弦定理列方程,解方程求得塔高的值.【详解】设塔底为,塔高为,故,由于,所以在三角形中,由余弦定理得,解得米.故选B.【点睛】本小题主要考查利用余弦定理解三角形,考查空间想象能力,属于基础题.8、D【解析】

由平面向量基本定理及单位向量可得点在的外角平分线上,且点在的外角平分线上,,,在中,由正弦定理得得解.【详解】因为所以,因为方向为外角平分线方向,所以点在的外角平分线上,同理,点在的外角平分线上,,,在中,由正弦定理得,故选:.【点睛】本题考查了平面向量基本定理及单位向量,考查向量的应用,意在考查学生对这些知识的理解掌握水平.9、A【解析】

设5人分到的面包数量从小到大记为,设公差为,可得,,求出,根据等差数列的通项公式,得到关于关系式,即可求出结论.【详解】设5人分到的面包数量从小到大记为,设公差为,依题意可得,,,,解得,.故选:A.【点睛】本题以数学文化为背景,考查等差数列的前项和、通项公式基本量的计算,等差数列的性质应用是解题的关键,属于中档题.10、A【解析】

利用三角函数的定义求出的值,然后利用诱导公式可求出的值.【详解】由三角函数的定义可得,由诱导公式可得.故选A.【点睛】本题考查三角函数的定义,同时也考查了利用诱导公式求值,在利用诱导公式求值时,充分理解“奇变偶不变,符号看象限”这个规律,考查计算能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

根据正弦值的定义,求得正弦值.【详解】依题意.故答案为:【点睛】本小题主要考查根据角的终边上一点的坐标求正弦值,属于基础题.12、【解析】

首先根据坐标求出三棱锥的体积,再计算出球的体积即可.【详解】有题知建立空间直角坐标系,如图所示由图知:平面,...故答案为:【点睛】本题主要考查三棱锥的外接球,根据题意建立空间直角坐标系为解题的关键,属于中档题.13、(2,3)【解析】

将直线方程变形为,它表示过两直线和的交点的直线系,解方程组,得上述直线恒过定点,故答案为.【方法点睛】本题主要考查待定直线过定点问题.属于中档题.探索曲线过定点的常见方法有两种:①可设出曲线方程,然后利用条件建立等量关系进行消元(往往可以化为的形式,根据求解),借助于曲线系的思想找出定点(直线过定点,也可以根据直线的各种形式的标准方程找出定点).②从特殊情况入手,先探求定点,再证明与变量无关.14、【解析】

根据可知,得到数列为等差数列;利用等差数列前项和公式构造方程可求得;利用等差数列通项公式求得结果.【详解】由得:,即:数列是公差为的等差数列又,解得:本题正确结果:【点睛】本题考查等差数列通项公式、前项和公式的应用,关键是能够利用判断出数列为等差数列,进而利用等差数列中的相关公式来进行求解.15、【解析】

由已知条件将两个角的三角函数转化为一个角的三角函数,再运用三角函数的值域求解.【详解】由已知得,所以,又因为,所以,解得,所以,故填.【点睛】本题考查三角函数的值域,属于基础题.16、或【解析】

将代入方程,化简结合余弦函数的性质即可求解.【详解】由题意可得:,即所以或又所以或故答案为:或【点睛】本题主要考查了三角函数求值问题,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解析】

(1)根据得,得或,结合取值范围求解;(2)结合换元法处理二次不等式恒成立求参数的取值范围.【详解】(1),即,即有,所以或,即或由于,,所以;(2),令,对任意都有恒成立,即对恒成立,只需,解得:,所以的最大值为.【点睛】此题考查根据三角函数值相等求自变量取值的关系,利用换元法转化为二次函数处理不等式问题,根据不等式恒成立求参数的取值范围,涉及根的分布的问题.18、(1)433(2)(3)【解析】

(1)设该校总人数为n人,由题意得,,所以n=2333.z=2333-133-333-153-453-633=433;(2)设所抽样本中有m个女生,因为用分层抽样的方法在高一女生中抽取一个容量为5的样本,所以,解得m=2也就是抽取了2名女生,3名男生,分别记作S1,S2;B1,B2,B3,则从中任取2人的所有基本事件为(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),(B1,B2),(B2,B3),(B1,B3)共13个,其中至少有1名女生的基本事件有7个:(S1,B1),(S1,B2),(S1,B3),(S2,B1),(S2,B2),(S2,B3),(S1,S2),所以从中任取2人,至少有1名女生的概率为.(3)样本的平均数为,那么与样本平均数之差的绝对值不超过3.5的数为1.4,2.6,1.2,2.7,1.3,1.3这6个数,总的个数为2,所以该数与样本平均数之差的绝对值不超过3.5的概率为.19、(1);(2)【解析】

(1)由知:,利用等比数列的通项公式即可得出;(2)bn=|11﹣2n|,设数列{11﹣2n}的前n项和为Tn,则.当n≤5时,Sn=Tn;当n≥6时,Sn=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函数恒等变换,可得,结合范围,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.【详解】解:(I)因为,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以当且仅当时取等号,所以△ABC面积的最大值为方法2:因为,所以,,所以,所以,当且仅当,即,当时取等号.所以△ABC面积的最大值为.【点睛

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论