湖南省永州市城山乡中学高一数学文上学期摸底试题含解析_第1页
湖南省永州市城山乡中学高一数学文上学期摸底试题含解析_第2页
湖南省永州市城山乡中学高一数学文上学期摸底试题含解析_第3页
湖南省永州市城山乡中学高一数学文上学期摸底试题含解析_第4页
湖南省永州市城山乡中学高一数学文上学期摸底试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省永州市城山乡中学高一数学文上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知P={a,b},M={t|tP},则P与M关系为 (

)D

A.PM

B.PM

C.MP

D.P∈M参考答案:D2.若角α的终边落在直线y=2x上,则直线y=2x上直线的sinα值为()A.B.C.D.参考答案:C考点:任意角的三角函数的定义.专题:计算题;分类讨论.分析:在直线y=2x上任意取一点(x,2x),x≠0,则该点到直线的距离等于|x|,由正弦函数的定义可得sinα==,化简可得结果.解答:解:∵角α的终边落在直线y=2x上,在直线y=2x上任意取一点(x,2x),x≠0,则该点到直线的距离等于|x|,由正弦函数的定义可得sinα===±,故选C.点评:本题考查任意角的三角函数的定义,体现了分类讨论的数学思想.3.设m,n是两条不同的直线,是两个不同的平面,给出下列四个命题:①如果,,那么;②如果,,,那么;③如果,,那么;④如果,,,那么.其中正确的是(

)A.①② B.②③ C.②④ D.③④参考答案:B【分析】利用空间中线线、线面、面面间的位置关系求解.【详解】①如果,,那么m,n相交、平行或异面直线,故①错误;②根据线面平行性质定理可知正确;③根据线面垂直判定定理可知正确;④如果,,,那么m,n相交、平行或异面直线,故④错误;故选:B【点睛】本题考查命题真假的判断,是基础题,解题时要注意空间思维能力的培养.4.对二次函数f(x)=ax2+bx+c(a为非零整数),四位同学分别给出下列结论,其中有且只有一个结论是错误的,则错误的结论是()A.﹣1是f(x)的零点 B.1是f(x)的极值点C.3是f(x)的极值 D.点(2,8)在曲线y=f(x)上参考答案:A【考点】二次函数的性质.【分析】可采取排除法.分别考虑A,B,C,D中有一个错误,通过解方程求得a,判断是否为非零整数,即可得到结论.【解答】解:可采取排除法.若A错,则B,C,D正确.即有f(x)=ax2+bx+c的导数为f′(x)=2ax+b,即有f′(1)=0,即2a+b=0,①又f(1)=3,即a+b+c=3②,又f(2)=8,即4a+2b+c=8,③由①②③解得,a=5,b=﹣10,c=8.符合a为非零整数.若B错,则A,C,D正确,则有a﹣b+c=0,且4a+2b+c=8,且=3,解得a∈?,不成立;若C错,则A,B,D正确,则有a﹣b+c=0,且2a+b=0,且4a+2b+c=8,解得a=﹣不为非零整数,不成立;若D错,则A,B,C正确,则有a﹣b+c=0,且2a+b=0,且=3,解得a=﹣不为非零整数,不成立.故选:A.5.某工厂采用系统抽样方法,从一车间全体300名职工中抽取20名职工进行一项安全生产调查,现将300名职工从1到300进行编号,已知从31到45这15个编号中抽到的编号是36,则在1到15中随机抽到的编号应是(

)A.

4

B.

5

C.6

D.7参考答案:C6.若△ABC的三个内角满足,则△ABC(

)A.一定是锐角三角形 B.一定是直角三角形C.一定是钝角三角形 D.不能确定参考答案:C【分析】利用正弦定理求出、、的关系,利用余弦定理判断的大小即可.【详解】解:的三个内角满足,由正弦定理可得:,设,,,显然是大角;,所以是钝角.故选:C.【点睛】本题考查正弦定理以及余弦定理的应用,熟记正弦定理和余弦定理即可,属于常考题型.7.已知某射击运动员,每次击中目标的概率都是0.8.现采用随机模拟的方法估计该运动员射击4次至少击中3次的概率:先由计算器算出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;因为射击4次,故以每4个随机数为一组,代表射击4次的结果.经随机模拟产生了如下20组随机数:

据此估计,该射击运动员射击4次至少击中3次的概率为(

)A.0.7

B.0.75

C.0.8

D.0.85参考答案:B8.若,则下列不等式错误的是(

)A. B.C. D.参考答案:D试题分析:由题意得,此题比较适合用特殊值法,令,那么对于A选项,正确,B选项中,可化简为,即成立,C选项,成立,而对于D选项,,不等式不成立,故D选项错误,综合选D.考点:1.指数函数的单调性;2.对数函数的单调性;3.特殊值法.【思路点晴】本题主要考查的是利用指数函数的单调性和对数函数的单调性比较大小问题,属于难题,此类题目的核心思想就是指数函数比较时,尽量变成同底数幂比较或者是同指数比较,对数函数就是利用换底公式将对数转换成同一个底数下,再利用对数函数的单调性比较大小,但对于具体题目而言,可在其取值范围内,取特殊值(特殊值要方便计算),能够有效地化难为易,大大降低了试题的难度,又快以准地得到答案.9.已知数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj﹣ai两数中至少有一个是该数列中的一项、现给出以下四个命题:①数列0,1,3具有性质P;②数列0,2,4,6具有性质P;③若数列A具有性质P,则a1=0;④若数列a1,a2,a3(0≤a1<a2<a3)具有性质P,则a1+a3=2a2,其中真命题有()A.4个 B.3个 C.2个 D.1个参考答案:B【考点】数列的应用.【分析】根据数列A:a1,a2,…,an(0≤a1<a2<…<an,n≥3)具有性质P:对任意i,j(1≤i≤j≤n),aj+ai与aj﹣ai两数中至少有一个是该数列中的一项,逐一验证,可知①错误,其余都正确.【解答】解:∵对任意i,j(1≤i≤j≤n),aj+ai与aj﹣ai两数中至少有一个是该数列中的项,①数列0,1,3中,a2+a3=1+3=4和a3﹣a2=3﹣1=2都不是该数列中的数,故①不正确;②数列0,2,4,6,aj+ai与aj﹣ai(1≤i≤j≤3)两数中都是该数列中的项,并且a4﹣a3=2是该数列中的项,故②正确;③若数列A具有性质P,则an+an=2an与an﹣an=0两数中至少有一个是该数列中的一项,∵0≤a1<a2<…<an,n≥3,而2an不是该数列中的项,∴0是该数列中的项,∴a1=0;故③正确;④∵数列a1,a2,a3具有性质P,0≤a1<a2<a3∴a1+a3与a3﹣a1至少有一个是该数列中的一项,且a1=0,1°若a1+a3是该数列中的一项,则a1+a3=a3,∴a1=0,易知a2+a3不是该数列的项∴a3﹣a2=a2,∴a1+a3=2a22°若a3﹣a1是该数列中的一项,则a3﹣a1=a1或a2或a3①若a3﹣a1=a3同1°,②若a3﹣a1=a2,则a3=a2,与a2<a3矛盾,③a3﹣a1=a1,则a3=2a1综上a1+a3=2a2,故选B.10.sin45°的值等于(

A.

B.

C.

D.1参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.log7[log5(log2x)]=0,则的值为

.参考答案:【考点】函数的零点;对数的运算性质.【专题】计算题;函数思想;方程思想;函数的性质及应用.【分析】利用方程通过对数运算法则直接求解即可【解答】解:log7[log5(log2x)]=0,可得log5(log2x)=1,即log2x=5,∴x=32.=故答案为:.【点评】本题考查方程的解,对数方程的求法,考查计算能力.12.已知函数,则满足不等式的实数的取值范围为

.参考答案:13.对于函数定义域中任意的,有如下结论:①;②;③;④;当时,上述结论中正确结论的序号是

(写出全部正确结论的序号)参考答案:①③④14.若方程的一根在区间上,另一根在区间上,则实数的范围

.参考答案:15.方程的实数解为________参考答案:16.函数的定义域为

.参考答案:17.已知f(x)=ax5+bx3+cx+1(a,b,c都不为零),若f(3)=11,则f(﹣3)=__________.参考答案:-9考点:函数奇偶性的性质.专题:函数的性质及应用.分析:根据已知条件可求出a?35+b?33+3c=10,所以便可求出f(﹣3)=﹣(a?35+b?33+3c)+1=﹣9.解答:解:由f(3)=11得:a?35+b?33+3c=10;∴f(﹣3)=﹣(a?35+b?33+3c)+1=﹣9.故答案为:﹣9.点评:考查奇函数的定义,知道要求f(﹣3)需求a?35+b?33+c?3三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知⊙O:x2+y2=1和定点A(2,1),由⊙O外一点P(x,y)向⊙O引切线PQ,切点为Q,且满足|PQ|=2|PA|.(I)求动点P的轨迹方程C;(Ⅱ)求线段PQ长的最小值;(Ⅲ)若以⊙P为圆心所做的⊙P与⊙O有公共点,试求P半径取最小值时的P点坐标.参考答案:【考点】直线与圆的位置关系;轨迹方程.【专题】计算题;方程思想;综合法;直线与圆.【分析】(I)由勾股定理可得PQ2=OP2﹣OQ2=4PA2,即x2+y2﹣1=4(x﹣2)2+4(y﹣1)2,化简可得动点P的轨迹方程C;(Ⅱ)求出PA长的最小值,即可求线段PQ长的最小值;(Ⅲ)P半径取最小值时,OC与圆C相交的交点为所求.【解答】解:(I)连接OQ,∵切点为Q,PQ⊥OQ,由勾股定理可得PQ2=OP2﹣OQ2.由已知|PQ|=2|PA|.可得PQ2=4PA2,即x2+y2﹣1=4(x﹣2)2+4(y﹣1)2.化简可得3x2+3y2﹣16x﹣8y+21=0.(2)3x2+3y2﹣16x﹣8y+21=0,可化为(x﹣)2+(y﹣)2=,圆心C(,),半径为∵|CA|==,∴|PA|min=﹣,∴线段PQ长的最小值为2(﹣);(Ⅲ)P半径取最小值时,OC与圆C相交的交点为所求,直线OC的方程为y=x,代入3x2+3y2﹣16x﹣8y+21=0,可得15x2﹣80x+84=0,∴x=,∴P半径取最小值时,P(,).【点评】本题主要考查求圆的标准方程的方法,圆的切线的性质,两点间的距离公式,属于中档题.19.在中,已知P为中线AD的中点.过点P作一直线分别和边AB、AC交于点M、N,设(Ⅰ)求证:的面积;(Ⅱ)求当时,求与的面积比.参考答案:证明(Ⅰ):当是直角时,,结论成立,当不是直角时,过A作直线BC的垂线,垂足为H,若是锐角,则,,若是钝角,则综上所述,的结论成立.

------------------6分(Ⅱ)因为D为BC的中点,P为AD的中点,

------------------8分

有知,存在实数,使得可得,又,

-----------------13分由(Ⅰ)知-----------------16分略20.已知函数,其中常数.(1)令,求函数的单调区间;(2)令,将函数的图像向左平移个单位,再往上平移个单位,得到函数的图像.对任意的,求在区间上零点个数的所有可能值.参考答案:解:(1),单调递增区间为();单调递减区间为().

(2)时,,,其最小正周期由,得,∴,即区间的长度为10个周期,若零点不在区间的端点,则每个周期有2个零点;

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论