版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年浙江省台州市温岭中学高一数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.函数f(x)=lnx+x3﹣3的零点所在大致区间为()A.(0,1) B.(1,2) C.(2,3) D.(3,4)参考答案:B【考点】二分法的定义.【分析】根据对数函数单调性和函数单调性的运算法则,可得f(x)=lnx+x3﹣3在(0,+∞)上是增函数,再通过计算f(1)、f(2)的值,发现f(1)?f(2)<0,即可得到零点所在区间.【解答】解:∵f(x)=lnx+x3﹣3在(0,+∞)上是增函数f(1)=﹣2<0,f(2)=ln2+5>0∴f(1)?f(2)<0,根据零点存在性定理,可得函数f(x)=lnx+x3﹣3的零点所在区间为(1,2)故选:B.2.二次函数,则实数a的取值范围是
(
)A.
B.
C.
D.参考答案:A3.若,且函数,则下列各式中成立的是(
)A.
B.C.
D.参考答案:C因为,所以,因为,函数,在上是减函数,所以,故选C.4.若,则(
)A.
B.
C.
D.参考答案:C略5.已知e是自然对数的底数,函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b,则下列不等式中成立的是() A.a<1<b B.a<b<1 C.1<a<b D.b<1<a参考答案:A【考点】函数零点的判定定理. 【专题】数形结合;转化法;函数的性质及应用. 【分析】根据函数与方程之间的关系转化为函数y=ex与y=2﹣x,y=lnx与y=2﹣x交点的横坐标的大小问题,利用数形结合进行比较即可. 【解答】解:由f(x)=ex+x﹣2=0得ex=2﹣x, 由g(x)=lnx+x﹣2=0得lnx=2﹣x, 作出计算y=ex,y=lnx,y=2﹣x的图象如图: ∵函数f(x)=ex+x﹣2的零点为a,函数g(x)=lnx+x﹣2的零点为b, ∴y=ex与y=2﹣x的交点的横坐标为a,y=lnx与y=2﹣x交点的横坐标为b, 由图象知a<1<b, 故选:A. 【点评】本题主要考查函数与方程的应用,利用函数转化为两个图象的交点问题,结合数形结合是解决本题的关键. 6.设函数,则的值为(
)
A.5
B.4
C.3
D.2参考答案:A7.正方体中,二面角的平面角等于(
)A.
B.
C.
DA.
参考答案:B略8.函数f(x)=x5+x﹣3的零点所在的区间是()A.[0,1] B.[1,2] C.[2,3] D.[3,4]参考答案:B【考点】函数零点的判定定理.【分析】利用函数的单调性和函数零点的判定定理即可得出.【解答】解:由函数f(x)=x5+x﹣3可知函数f(x)在R上单调递增,又f(1)=1+1﹣3=﹣1<0,f(2)=25+2﹣3>0,∴f(1)f(2)<0,因此函数f(x)在(1,2)上存在唯一零点.故选B.9.四个物体沿同一方向同时开始运动,假设其经过的路程和时间的函数关系分别是.如果运动的时间足够长,则运动在最前面的物体一定是A.
B.
C.
D.参考答案:D10.(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立,则实数m的取值范围是() A.(1,+∞) B.(﹣∞,﹣1) C. D. 参考答案:C【考点】函数恒成立问题. 【专题】计算题. 【分析】先根据题中条件:“(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切实数x恒成立”,结合二次函数的性质,得到解答. 【解答】解:不等式(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立, 即(m+1)x2﹣(m﹣1)x+3(m﹣1)<0对一切x∈R恒成立 若m+1=0,显然不成立 若m+1≠0,则 解得a. 故选C. 【点评】本题的求解中,注意对二次项系数的讨论,二次函数恒小于0只需.二、填空题:本大题共7小题,每小题4分,共28分11.“”是“有且仅有整数解”的__________条件。参考答案:必要条件
解析:左到右来看:“过不去”,但是“回得来”12.的定义域为
.参考答案:{x|x≥﹣2且x≠1}【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,分式的分母不等于0联立不等式组可得原函数的定义域.【解答】解:要使原函数有意义,则,解得x≥﹣2且x≠1.所以原函数的定义域为{x|x≥﹣2且x≠1}.故答案为{x|x≥﹣2且x≠1}.13.已知△ABC中,,且的最小值为,则=___参考答案:1表示方向上的单位向量,设,即,由于,所以所得向量对应的点在直线上,即三点共线,如图所示,的最小值即的最小值为点到直线的距离,所以为等腰直角三角形.所以,在三角形中,,用余弦定理得,由勾股定理得,解得,且,所以【点睛】本题主要考查平面向量的基本定理,考查用向量表示三点共线的方法,考查勾股定理及余弦定理的具体应用,有一定的运算能力.解题的难点在于的几何意义,其中表示方向上的单位向量,转化为可得其对应的点和是三点共线的,由此可求得最小值为点到直线的距离.14.已知,则__________参考答案:略15.已知点在直线上,则的最小值为__________.参考答案:5【分析】由题得表示点到点的距离,再利用点到直线的距离求解.【详解】由题得表示点到点的距离.又∵点在直线上,∴的最小值等于点到直线的距离,且.【点睛】本题主要考查点到两点间的距离和点到直线的距离的计算,意在考查学生对这些知识的理解掌握水平,属于基础题.16.设函数f(x)=2cos(ωx+φ)对任意的x都有,若设函数g(x)=3sin(ωx+φ)﹣1,则的值是.参考答案:﹣1【考点】余弦函数的图象.【专题】转化思想;待定系数法;函数的性质及应用.【分析】根据,得出x=是函数f(x)的一条对称轴,从而求出φ的表达式,再函数g(x)的解析式以及的值.【解答】解:∵函数f(x)=2cos(ωx+φ)对任意的x都有,∴x=是函数f(x)的一条对称轴,∴cos(ω+φ)=±1,即ω+φ=kπ,k∈Z,∴φ=kπ﹣ω,k∈Z;∴函数g(x)=3sin(ωx+φ)﹣1=3sin(ωx+kπ﹣ω)﹣1,k∈Z;∴=3sin(ω+kπ﹣ω)=3sinkπ﹣1=﹣1.故答案为:﹣1.【点评】本题主要考查三角函数的对称轴的问题.注意正余弦函数在其对称轴上取最值,是基础题目.17.设集合A={-1,1,3},B={a+2,a2+4},若A∩B={3},则实数a的值为
参考答案:1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.将函数f(x)=2cos2x的图象向右平移个单位得到函数g(x)的图象,若函数g(x)在区间和上均单调递增,则实数a的取值范围是.参考答案:[,]【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)=2cos(2x﹣);再利用条件以及余弦函数的单调性,求得a的范围.【解答】解:将函数f(x)=2cos2x的图象向右平移个单位得到函数g(x)=2cos(2x﹣)的图象,若函数g(x)在区间和上均单调递增,∴a>0.由2kπ﹣π≤0﹣≤2kπ,且2kπ﹣π≤2?﹣≤2kπ,k∈Z,求得k=0,﹣π≤a≤①.由2nπ﹣π≤4a﹣≤2nπ,且2nπ﹣π≤2?﹣≤2nπ,求得n=1,≤a≤②,由①②可得,≤a≤,故答案为:.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,余弦函数的单调性,属于中档题.19.(10分)已知集合,且,求实数m的取值范围.参考答案:解:∵,∴.……………1分
若,则,满足;……………4分若,则.……………9分
综上,的取值范围是或,即.……………10分
21.(8分)对甲、乙的学习成绩进行抽样分析,各抽5门功课,得到的观测值如下:甲6080709070乙8060708075问:甲、乙谁的平均成绩最好?谁的各门功课发展较平衡?参考答案:21.(1),甲的平均分高(2),乙的稳定性好略21.已知函数,若函数f(x)的图象向左平移个单位,得到函数g(x)的图象。(1)当求函数f(x)的值域。(2)求g(x)的解析式,判断并证明g(x)的奇偶性.参考答案:(1),令t=--------------6分(2)g(x)=sin[2(x+)+]=sin(2x+)=cos2x,------------9分g(x)是R上的偶函数证明:g(-x)=cos(-2x)=cos2x=g(x),定义域为R,所以g(x)是R上的偶函数.-----------12分22.已知函数.(1)求函数f(x)的最小正周期与对称轴方程;(2)求函数f(x)的单调递增区间.参考答案:【考点】三角函数中的恒
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度农产品期货交易合作协议书范本3篇
- 个人购房合同15篇
- 销售的年终工作总结笔记10篇
- 2024年信息技术服务项目招标书3篇
- 军训小组总结
- 学生会干事个人总结范文
- 电子商务个人实习报告集锦8篇
- 拥抱幸福的小熊名著读后感
- 公司普通员工个人工作总结15篇
- 2022下学期班主任工作计划
- 生命不是游戏拒绝死亡挑战主题班会
- 本地化部署合同
- 新教科版小学1-6年级科学需做实验目录
- 拒绝躺平 停止摆烂-学生心理健康主题班会(课件)
- 嵌入式系统结课设计论文
- 目标责任书-营销总监
- 英国签证户口本翻译模板(共4页)
- 列管式换热器设计课程设计说明书
- 电镀生产工序
- 一线员工技能等级评定方案
- 输电线路铁塔基础施工质量控制
评论
0/150
提交评论