贵州省贵阳2023高三数学上学期高考适应性月考理_第1页
贵州省贵阳2023高三数学上学期高考适应性月考理_第2页
贵州省贵阳2023高三数学上学期高考适应性月考理_第3页
贵州省贵阳2023高三数学上学期高考适应性月考理_第4页
贵州省贵阳2023高三数学上学期高考适应性月考理_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

秘密★启用前理科数学试卷注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.考试结束后,请将本试卷和答题卡一并交回.满分150分,考试用时120分钟.一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数z满足,则在复平面内对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限2.设集合,,则A.B.C.D.3.设a,b为两条不同的直线,,为两个不同的平面,则下列结论正确的是A.若,,则B.若,,,则C.若,,则D.若,,,则4.在2022年北京冬奥会开幕式上,二十四节气倒计时惊艳亮相,与节气相配的14句古诗词,将中国人独有的浪漫传达给了全世界.我国古代天文学和数学著作《周髀算经》中记载:一年有二十四个节气,每个节气的晷长损益相同(晷是按照日影测定时刻的仪器,晷长即为所测量影子的长度),二十四节气及晷长变化如图1所示,相邻两个节气晷长减少或增加的量相同,周而复始.已知立夏的晷长为4.5尺,处暑的晷长为5.5尺,则夏至所对的晷长为A.1.5尺B.2.5尺C.3.5尺D.4.5尺5.若实数x,y满足约束条件,则的最小值为A.B.C.2D.46.如图2,在直角梯形ABCD中,,,,,P是线段AB上的动点,则的最小值为A.B.5C.D.77.已知,则的值为A.B.C.D.8.开学典礼上甲、乙、丙、丁、戊这5名同学从左至右排成一排上台领奖,要求甲与乙相邻且甲与丙之间恰好有1名同学的排法有()种.A.12B.16C.20D.249.已知随机变量,且,则的最小值为A.9B.6C.4D.210.设函数有4个不同的零点,则正实数的取值范围为A.B.C.D.11.已知,分别为椭圆E:的左、右焦点,E上存在两点A,B使得梯形的高为c(其中c为半焦距),且,则E的离心率为A.B.C.D.12.在给出的①;②;③三个不等式中,正确的个数为A.0个B.1个C.2个D.3个二、填空题(本大题共4小题,每小题5分,共20分)13.已知数列的前n项和为,若,,则.14.已知向量,,若与的夹角为60°,则.15.如图3,经过坐标原点O且互相垂直的两条直线AC和BD与圆相交于A,C,B,D四点,则四边形ABCD面积的最大值为.16.如图4,在棱长为4的正方体中,已知点P为棱上靠近于点的四等分点,点Q为棱CD上一动点.若M为平面与平面的公共点,N为平面与平面ABCD的公共点,且点M,N都在正方体的表面上,则由所有满足条件的点M,N构成的区域的面积之和为.三、解答题(共70分.解答题应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,角B为钝角,且.(1)求角B的大小;(2)若点D在AC边上,满足,且,,求BC边的长.18.(本小题满分12分)如图5,在直三棱柱中,△ABC是以BC为斜边的等腰直角三角形,,点D,E分别为棱BC,上的中点.(1)求证:AD//平面;(2)若二面角的大小为,求实数t的值.19.(本小题满分12分)某中学为增强学生的环保意识,举办了“爱贵阳,护环境”的知识竞赛活动,为了解本次知识竞赛活动参赛学生的成绩,从中抽取了n名学生的分数(得分取正整数,满分为100分,所有学生的得分都在区间中)作为样本进行统计,按照,,,,,的分组作出如图6甲所示的频率分布直方图,并作出如图乙的样本分数茎叶图(图中仅列出了得分在,的数据).(1)求样本容量n和频率分布直方图中x,y的值;(2)在选取的样本中,从竞赛成绩不低于80分的2组学生中按分层抽样抽取了5名学生,再从抽取的这5名学生中随机抽取2名学生到观山湖公园参加环保知识宣传活动,设抽到的学生成绩在的人数为X,将样本频率视为概率,求X的概率分布列及期望.20.(本小题满分12分)已知椭圆C:的离心率为,F为椭圆C的右焦点,M为椭圆上的点,若MF的最小值为.(1)求椭圆C的方程;(2)若圆E:的切线l与椭圆C交于A,B两点,求△FAB面积的最大值.21.(本小题满分12分)已知函数,.(1)当时,讨论的单调性;(2)当时,不等式恒成立,求a的取值范围.请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡,上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4;坐标系与参数方程]在直角坐标系xOy中,曲线C的参数方程为(为参数),以坐标原点为极点,x轴正半轴为极轴建立的极坐标系中,直线l的方程是.(1)求曲线C的普通方程和直线l的直角坐标方程;(2)若点A的坐标为(1,0),直线1与曲线C交于P,Q两点,求的值.23.(本小题满分10分)[选修4-5:不等式选讲]已知函数的最小值为m.(1)求m;(2)已知a,b,c为正数,且,求的最小值.贵阳第一中学2023届高考适应性月考卷(二)理科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)题号123456789101112答案DCCACDACCAAB【解析】1.由,得,,故在复平面内所对应的点为,在第四象限,故选D.2.,,所以,故选C.3.A.当时,,可以成立,本选项结论不正确;B.当时,若,,,此时,成立,因此本选项结论不正确;C.因为,所以,,,所以,而,,所以,而,所以,所以本选项结论正确;D.当时,若,,此时,成立,因此本选项结论不正确,故选C.4.设相邻两个节气晷长减少或增加的量为,则夏至到处暑增加4d,立夏到夏至减少3d,夏至的晷长为x,则,解得,故选A.5.可行域如图1所示,作出直线,可知z要取最小值,即直线经过点A,解方程组得,所以,故选C.6.如图2,以B点为坐标原点,建立平面直角坐标系,设,,因为,,所以,,,所以,,,所以,所以,所以当,即时,的最小值为7,故选D.7.由,得,∴,所以,∴,所以,故选A.8.若甲与丙之间为乙,即乙在甲、丙中间且三人相邻,共有种情况,将三人看成一个整体,与丁戊两人全排列,共有种情况,则此时有种排法;若甲与丙之间不是乙,先从丁、戊中选取1人,安排在甲、丙之间,有种选法,此时乙在甲的另一侧,将四人看成一个整体,考虑之前的顺序,有种情况,将这个整体与剩下的1人全排列,有种情况,此时有种排法,所以总共用种情况符合题意,故选C.9.由随机变量,则正态分布的曲线的对称轴为,又因为,所以,所以.当时,有,当且仅当,即时等号成立,故最小值为4,故选C.10.当时,,即,分别画出图像知有一个交点,故有一个零点,所以当时,函数有3个零点,令,即,,解得,由题可得区间内的3个零点分别是,1,2取得,所以即在和之间,即,解得,故选A.11.如图3,因为,所以,则,为梯形的两条底边,作于点P,则,因为梯形的高为c,所以,在中,,则即.设,则,在,即,解得,同理,又,所以,即,所以,故选A.12.令,则,所以时,,即在上单调递增,当时,,即在上单调递减;可得,即,故①正确;因为,所以,即,所以,即,故②错误;再令,则,所以当时,,即在上单调递增,所以,则,即.又,,所以,即,即,所以,即,所以,即,故③错误,故选B.二、填空题(本大题共4小题,每小题5分,共20分)题号13141516答案9445【解析】13.由已知,,①,当时,,当时,②,①-②得:,整理得:,即,所以数列是以为首项,公比为2的等比数列,所以,所以,所以.14.由题意得,故,解得,其中不合题意,舍去,故.15.如图4,由题设,则圆心,半径,若圆心到直线AC,BD的距离,且,,,而,所以,令,则,当,即时,.16.如图5,由已知得:平面与平面的交线与平行,M的轨迹为平面与平面的交线在矩形内线段所构成的图形,当点Q与点D重合时,M轨迹为线段,当点Q从点D沿DC往点C运动时,M的轨迹为以P为一端点,另一端点落在线段AG上的线段,其中G为棱AB上靠近于点B的四等分点,综上,M的轨迹为线段以及三角形APG及其内部,所以点M构成区域的面积为.同理可得N的轨迹为平面与平面ABCD的交线在矩形ABCD内线段所构成的图形,N构成区域为梯形AGCD,面积为,所以M,N构成的区域的面积之和为.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:(1)由已知:,则.由正弦定理,,∵A,,故,∴,∴,即.∵,则,∴,即.(2)由题意,得.∵,∴,∴.∵,,,∴,∴,,则,∴.18.(本小题满分12分)(1)证明:如图6,点D,E分别为BC,的中点,在直三棱柱中,,,所以四边形为平行四边形,连接DE,则,,所以,,所以四边形是平行四边形,所以.又因为平面,平面,所以平面.(2)解:方法一:在平面ABC内,过点C作AD的垂线,由ABC为等腰直角三角形知垂足为D,则为二面角的平面角,即,在等腰直角三角形ABC中,不妨设,,则,在中,,∴,∴.方法二:平面ABC,又,以为正交基底建立如图7所示的空间直角坐标系A-xyz,设,,则,则,,,所以,.设平面的一个法向量为,由,得,又平面ADC的一个法向量为,因为二面角的大小为,所以.即,∴,∴.19.(本小题满分12分)解:(1)由直方图可知,分数在中的频率为,根据茎叶图可知,分数在中的频数为3,所以样本容量,根据茎叶图可知,分数在中的频数为1,所以分数在中的频率为,所以,所以,由,得,综上所述:,,.(2)由题意,本次竞赛成绩样本中分别在中的学生有名,分数在中的学生有名,抽取分数在中的学生有名,抽取分数在中的学生有名.由题可知,X的所有取值有0,1,2,,,,所以,X的分布列为:X012P∴.20.(本小题满分12分)解:(1)椭圆的离心率,又MF的最小值为,即:,得,,∴,故椭圆C的方程为.(2)由(1)点,若直线l的斜率不存在,l不能过点,则l的方程只能为,∴,.若直线l的斜率存在,设l的方程为:,,,由直线l与圆E相切得,化简得,则,.由,得,,则,..又到直线l的距离..设,则,.综上,△FAB面积的最大值为4.21.(本小题满分12分)解:(1),由,得出,.当,由,得或,,得,∴在和上单调递增,在上单调递减;同理,当时,∴在和上单调递增,在上单调递减;当时,在上单调递减,在上单调递增;当时,,则在上单调递增.(2)由可转化为,令,,令,,令,得,在上递增,在上单调递减,所以时,在内存在唯一零点,当时,,,单调递减,当时,,,单调递境,故.因为,所以,所以,所以,即.22.(本小题满分10分)【选修4:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论