版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省济南市稼轩中学高二数学文下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若关于的方程在上有实根,则实数的取值范围是(
)A.
B.
C.
D.参考答案:A2.给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是(
)参考答案:A3.动点在圆上移动时,它与定点连线的中点的轨迹方程是(
)A.
B.
C.
D.参考答案:C略4.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为的两个全等的等腰直角三角形,则该几何体的体积是(
)A. B. C. D.参考答案:B略5.甲,乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论:()工人甲乙废品数01230123概率0.40.30.20.10.30.50.20A.甲的产品质量比乙的产品质量好一些B.乙的产品质量比甲的产品质量好一些C.两人的产品质量一样好D.无法判断谁的质量好一些参考答案:B【考点】BC:极差、方差与标准差.【分析】根据出现废品数与出现的概率,得到甲生产废品期望和乙生产废品期望,把甲和乙生产废品的期望进行比较,得到甲生产废品期望大于乙生产废品期望,得到乙的技术要好一些.【解答】解:甲生产废品期望是1×0.3+2×0.2+3×0.1=1,乙生产废品期望是1×0.5+2×0.2=0.9,∴甲生产废品期望大于乙生产废品期望,故选B.【点评】本题考查两的知识点是方差或标准差,及数学期望,根据方差说明两组数据的稳定性,这是统计中经常出现的一类问题.6.不在表示的平面区域内的点是(
)A.
B.
C.
D.参考答案:D7.复数=(
)A.
B.
C.
D.参考答案:D.
8.若x≥0,y≥0,且x+2y=1,则2x+3y2的最小值是() A.2 B. C. D.0参考答案:B【考点】二次函数在闭区间上的最值. 【专题】计算题. 【分析】由题设条件x≥0,y≥0,且x+2y=1,可得x=1﹣2y≥0,从而消去x,将2x+3y2表示成y的函数,由函数的性质求出最小值得出答案 【解答】解:由题意x≥0,y≥0,且x+2y=1 ∴x=1﹣2y≥0,得y≤,即0≤y≤ ∴2x+3y2=3y2﹣4y+2=3(y﹣)2+, 又0≤y≤,y越大函数取到的值越小, ∴当y=时,函数取到最小值为 故选B 【点评】本题考查求函数的值域,解答本题关键是将求最值的问题转化为求二次函数在闭区间上的最值,但是转化后自变量的取值范围容易漏掉而导致错误. 9.直线与圆相切,则实数的值为
(
)A.
B.或
C.或
D.参考答案:B10.下列命题错误的是
A、命题“若,则方程有实数根”的逆否命题为“若方程无实数根,则”
B、“”是“”的充分不必要条件
C、对于命题,使得,则,均有
D、若为假命题,则均为假命题
参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.在△ABC中,若D为BC的中点,则有,将此结论类比到四面体中,在四面体A﹣BCD中,若G为△BCD的重心,则可得一个类比结论:
.参考答案:考点:向量在几何中的应用.专题:综合题;推理和证明.分析:“在△ABC中,D为BC的中点,则有,平面可类比到空间就是“△ABC”类比“四面体A﹣BCD”,“中点”类比“重心”,可得结论.解答: 解:由“△ABC”类比“四面体A﹣BCD”,“中点”类比“重心”有,由类比可得在四面体A﹣BCD中,G为△BCD的重心,则有.故答案为:.点评:本题考查了从平面类比到空间,属于基本类比推理.利用类比推理可以得到结论、证明类比结论时证明过程与其类比对象的证明过程类似或直接转化为类比对象的结论.12.已知双曲线的左、右焦点分别为F1、F2,点P在双曲线上,且PF2⊥x轴,则F2到直线PF1的距离为.参考答案:略13.图1是某学习小组学生数学考试成绩的茎叶图,1号到16号同学的成绩依次为A1、A2、…、A16,图2是统计茎叶图中成绩在一定范围内的学生人数的算法流程图,那么该算法流程图输出的结果是.参考答案:10【考点】程序框图.【专题】对应思想;综合法;算法和程序框图.【分析】模拟执行算法流程图可知其统计的是数学成绩大于等于90的人数,由茎叶图知:数学成绩大于等于90的人数为10,从而得解.【解答】解:由算法流程图可知,其统计的是数学成绩大于等于90的人数,所以由茎叶图知:数学成绩大于等于90的人数为10,因此输出结果为10.故选:B.【点评】本题考查学生对茎叶图的认识,通过统计学知识考查程序流程图的认识,是一道综合题.14.下列图中的多边形均为正多边形,M、N是所在边上的中点,双曲线均以图中的F1、F2为焦点,设图(1),(2),(3)中的双曲线的离心率分别为e1、e2、e3.则e1、e2、e3的大小关系为________.
参考答案:略15.在空间直角坐标系中,已知点M(1,0,1),N(-1,1,2),则线段MN的长度为____________参考答案:【分析】根据两点间距离公式计算.【详解】.故答案为.【点睛】本题考查空间两点间距离公式,属于基础题.16.如图所示,给出的是某几何体的三视图,其中正视图与侧视图都是边长为2的正三角形,俯视图为半径等于1的圆.试求这个几何体的体积与侧面积.正视图
侧视图
俯视图参考答案:,.略17.如图,在三棱锥中,是边长为2的正三角形,,平面分别与三棱锥的四条棱交于,若直线,直线,则平面与平面所成二面角(锐角)的余弦值等于_______________________
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在平面直角坐标系xOy内,椭圆E:+=1(a>b>0),离心率为,右焦点F到右准线的距离为2,直线l过右焦点F且与椭圆E交于A、B两点.(1)求椭圆E的标准方程;(2)若直线l与x轴垂直,C为椭圆E上的动点,求CA2+CB2的取值范围;(3)若动直线l与x轴不重合,在x轴上是否存在定点P,使得PF始终平分∠APB?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案:(1)由题意得:,得a,b即可(2)A(2,),B(2,﹣),设点C(x0,y0),则CA2+CB2=(x0﹣2)2+(y0﹣)2+(x0﹣2)2+(y0+)2=2x02+2y02﹣8x0+12,又点C在椭圆上,∴,消去y0得CA2+CB2=,,即可求解.(3)假设在x轴上存在点P满足题意,不妨设P(t,0),设A(x1,y1),B(x2,y2),由PF平分∠APB知:kAP+kBP=0,又kAP+kBP===0,利用韦达定理即可求解.解:(1)由题意得:,得a=2,c=2,…∵a2=b2+c2,∴b2=4,∴椭圆的标准方程为:.…(2)当直线AB与x轴垂直时,A(2,),B(2,﹣),设点C(x0,y0),则CA2+CB2=(x0﹣2)2+(y0﹣)2+(x0﹣2)2+(y0+)2=2x02+2y02﹣8x0+12,又点C在椭圆上,∴,消去y0得CA2+CB2=,,∴CA2+CB2得取值范围为[28﹣16,28+16].…(3)假设在x轴上存在点P满足题意,不妨设P(t,0),设A(x1,y1),B(x2,y2),设直线AB的方程为:x=my+2,联列,消去x得(m2+2)y2+4my﹣4=0,则,,…由PF平分∠APB知:kAP+kBP=0,…又kAP+kBP===0,又x1=my1+2,x2=my2+t,得(2﹣t)(y1+y2)+2my1y2=0,即(2﹣t)×+2m×=0,得t=4,所以存在点P(4,0)满足题意.
…19.设a为实数,给出命题p:关于x的不等式的解集为?,命题q:函数f(x)=lg[ax2+(a﹣2)x+]的定义域为R,若命题“p∨q”为真,“p∧q”为假,求实数a的取值范围.参考答案:【考点】复合命题的真假.【分析】先根据指数函数的单调性,对数函数的定义域,以及一元二次不等式解的情况和判别式△的关系求出命题p,q下的a的取值范围,再根据p∨q为真,p∧q为假得到p,q一真一假,所以分别求出p真q假,p假q真时的a的取值范围并求并集即可.【解答】解:命题p:|x﹣1|≥0,∴,∴a>1;命题q:不等式的解集为R,∴,解得;若命题“p∨q”为真,“p∧q”为假,则p,q一真一假;p真q假时,,解得a≥8;p假q真时,,解得;∴实数a的取值范围为:.20.复数z=(1﹣i)a2﹣3a+2+i(a∈R),(1)若z=,求|z|;(2)若在复平面内复数z对应的点在第一象限,求a的范围.参考答案:【考点】复数求模;复数的基本概念.【专题】数系的扩充和复数.【分析】(1)根据z=,确定方程即可求|z|;(2)利用复数的几何意义,即可得到结论.【解答】解
z=(1﹣i)a2﹣3a+2+i=a2﹣3a+2+(1﹣a2)i,(1)由知,1﹣a2=0,故a=±1.当a=1时,z=0;当a=﹣1时,z=6.(2)由已知得,复数的实部和虚部皆大于0,即,即,所以﹣1<a<1.【点评】本题主要考查复数的几何意义,以及复数的有关概念,比较基础.21.(1)已知集合,.p:,q:,并且p是q的充分条件,求实数m的取值范围.(2)已知p:,,q:,,若为假命题,求实数m的取值范围.参考答案:(1);(2)【分析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解.(2)依题意知,均为假命题,分别求得实数的取值范围,即可求解.【详解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因为命题是命题的充分条件,所以,则,解得或,∴实数的取值范围是.(2)依题意知,,均为假命题,当是假命题时,恒成立,则有,当是假命题时,则有,或.所以由均为假命题,得,即.【点睛】本题主要考查了复合命题的真假求参数,以及充要条件的应用,其中解答中正确得出集合间的关系,列出不等式,以及根据复合命题的真假关系求解是解答的关键,着重考查了推理与运算能力,属于基础题.22.(本题满分16分)如图:AD=2,AB=4的长方形所在平面与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024版典当行特色质押借款服务规范合同2篇
- 2024子女赡养父母法律责任协议3篇
- 2024区商贸城商铺租赁与消费者权益保护合作合同3篇
- 2024年度三方房屋买卖保障及售后服务协议3篇
- 2024年游泳馆救生员职务合同
- 2024年施工现场安全防护设施设计及安装服务合同2篇
- 2024年度船舶光租业务合同履行与监管3篇
- 2024年度同程艺龙旅游服务合同2篇
- 2024年合同终止协议样本英文3篇
- 2024版PCB板设计开发与技术咨询服务采购合同3篇
- 前程无忧测评题库及答案
- 《中韩关系演讲》课件
- 直系亲属股权无偿转让合同(2篇)
- 【初中生物】尝试对生物进行分类-2024-2025学年七年级生物上册同步教学课件(人教版2024)
- 企业愿景及三年规划目标
- 2024统编版初中八年级语文上册第六单元:大单元整体教学设计
- 无子女离婚协议书范文百度网盘
- 五年级上册数学试题试卷(8篇)
- 2024-2025学年四年级科学上册第三单元《运动和力》测试卷(教科版)
- 学术规范与论文写作智慧树知到答案2024年浙江工业大学
- 2024年典型事故案例警示教育手册15例
评论
0/150
提交评论