2023届甘肃省靖远二中高一数学第二学期期末质量跟踪监视试题含解析_第1页
2023届甘肃省靖远二中高一数学第二学期期末质量跟踪监视试题含解析_第2页
2023届甘肃省靖远二中高一数学第二学期期末质量跟踪监视试题含解析_第3页
2023届甘肃省靖远二中高一数学第二学期期末质量跟踪监视试题含解析_第4页
2023届甘肃省靖远二中高一数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年高一下数学期末模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若平面向量,满足,,且,则等于()A. B. C.2 D.82.已知等比数列的公比为,若,,则()A.-7 B.-5 C.7 D.53.已知函数,,的零点分别为a,b,c,则()A. B. C. D.4.如图,在正方体ABCD-A1B1C1D1中,E,F分别是C1D1,CC1的中点,则异面直线AE与BF所成角的余弦值为()A. B. C. D.5.已知数列满足,为其前项和,则不等式的的最大值为()A.7 B.8 C.9 D.106.已知等差数列的前项之和为,前项和为,则它的前项的和为()A.B.C.D.7.将边长为2的正方形沿对角线折起,则三棱锥的外接球表面积为()A. B. C. D.8.已知,则的值为()A. B. C. D.9.将函数的图像上的所有点向右平移个单位长度,得到函数的图像,若的部分图像如图所示,则函数的解析式为A. B.C. D.10.已知变量x与y负相关,且由观测数据算得样本平均数=1.5,=5,则由该观测数据算得的线性回归方程可能是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知等比数列{an}的前n项和为Sn,若S3=7,S6=63,则an=_____12.已知变量,满足,则的最小值为________.13.设数列()是等差数列,若和是方程的两根,则数列的前2019项的和________14.已知等差数列的前项和为,若,则_____15.设函数,则的值为__________.16.某班委会由4名男生与3名女生组成,现从中选出2人担任正副班长,其中至少有1名女生当选的概率是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在中,角对应的边分别是,且.(1)求的周长;(2)求的值.18.已知圆过两点,,且圆心在直线上.(1)求圆的标准方程;(2)求过点且与圆相切的直线方程.19.小明同学在寒假社会实践活动中,对白天平均气温与某家奶茶店的品牌饮料销量之间的关系进行了分析研究,他分别记录了1月11日至1月15日的白天气温()与该奶茶店的品牌饮料销量(杯),得到如表数据:日期1月11号1月12号1月13号1月14号1月15号平均气温()91012118销量(杯)2325302621(1)若先从这五组数据中抽出2组,求抽出的2组数据恰好是相邻2天数据的概率;(2)请根据所给五组数据,求出关于的线性回归方程式;(3)根据(2)所得的线性回归方程,若天气预报1月16号的白天平均气温为,请预测该奶茶店这种饮料的销量.(参考公式:,)20.近年来,我国自主研发的长征系列火箭的频频发射成功,标志着我国在该领域已逐步达到世界一流水平.火箭推进剂的质量为,去除推进剂后的火箭有效载荷质量为,火箭的飞行速度为,初始速度为,已知其关系式为齐奥尔科夫斯基公式:,其中是火箭发动机喷流相对火箭的速度,假设,,,是以为底的自然对数,,.(1)如果希望火箭飞行速度分别达到第一宇宙速度、第二宇宙速度、第三宇宙速度时,求的值(精确到小数点后面1位).(2)如果希望达到,但火箭起飞质量最大值为,请问的最小值为多少(精确到小数点后面1位)?由此指出其实际意义.21.某地统计局调查了10000名居民的月收入,并根据所得数据绘制了样本的频率分布直方图如图所示.(1)求居民月收入在[3000,3500)内的频率;(2)根据频率分布直方图求出样本数据的中位数;(3)为了分析居民的月收入与年龄、职业等方面的关系,必须按月收入再从这10000中用分层抽样的方法抽出100人做进一步分析,则应从月收入在[2500,3000)内的居民中抽取多少人?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】

由,可得,再结合,展开可求出答案.【详解】由,可知,展开可得,所以,又,,所以.故选:B.【点睛】本题考查向量数量积的应用,考查学生的计算求解能力,注意向量的平方等于模的平方,属于基础题.2、A【解析】

由等比数列通项公式可构造方程求得,再利用通项公式求得结果.【详解】故选:【点睛】本题考查等比数列通项公式基本量的计算问题,考查基础公式的应用,属于基础题.3、B【解析】

,,分别为,,的根,作出,,的图象与直线,观察交点的横坐标的大小关系.【详解】由题意可得,,分别为,,的根,作出,,,的图象,与直线的交点的横坐标分别为,,,由图象可得,故选:.【点睛】本题主要考查了函数的零点,函数的图象,数形结合思想,属于中档题.4、D【解析】

以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,再利用向量法求出异面直线AE与BF所成角的余弦值.【详解】以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设正方体ABCD﹣A1B1C1D1中棱长为2,E,F分别是C1D1,CC1的中点,A(2,0,0),E(0,1,2),B(2,2,0),F(0,2,1),=(﹣2,1,2),=(﹣2,0,1),设异面直线AE与BF所成角的平面角为θ,则cosθ===,∴异面直线AE与BF所成角的余弦值为.故选D.【点睛】本题考查异面直线所成角的余弦值的求法,注意向量法的合理运用,属于基础题.5、B【解析】

由题意,整理得出是一个首项为12,公比为的等比数列,从而求出,再求出其前项和,然后再求出的表达式,再代入数验证出的最大值即可.【详解】由可得,即,所以数列是等比数列,又,所以,故,解得,(),所以的最大值为8.选B.【点睛】本题考查数列的递推式以及数列求和的方法分组求和,属于数列中的综合题,考查了转化的思想,构造的意识,本题难度较大,思维能力要求高.6、C【解析】试题分析:由于等差数列中也成等差数列,即成等差数列,所以,故选C.考点:等差数列前项和的性质.7、C【解析】

根据题意,画出图形,结合图形得出三棱锥的外接球直径,从而求出外接球的表面积,得到答案.【详解】由题意,将边长为2的正方形沿对角线折起,得到三棱锥,如图所示,则,三棱锥的外接球直径为,即半径为,外接球的表面积为,故选C.【点睛】本题主要考查了平面图形的折叠问题,以及外接球的表面积的计算,着重考查了空间想象能力,以及推理与计算能力,属于基础题.8、B【解析】sin(π+α)−3cos(2π−α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②联立解得:cos2α=.∴cos2α=2cos2α−1=.故选B.9、C【解析】

根据图象求出A,ω和φ的值,得到g(x)的解析式,然后将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象.【详解】由图象知A=1,(),即函数的周期T=π,则π,得ω=2,即g(x)=sin(2x+φ),由五点对应法得2φ=2kπ+π,k,得φ,则g(x)=sin(2x),将g(x)图象上的所有点向左平移个单位长度得到f(x)的图象,即f(x)=sin[2(x)]=sin(2x)=,故选C.【点睛】本题主要考查三角函数解析式的求解,结合图象求出A,ω和φ的值以及利用三角函数的图象变换关系是解决本题的关键.10、A【解析】

先由变量负相关,可排除D;再由回归直线过样本中心,即可得出结果.【详解】因为变量x与y负相关,所以排除D;又回归直线过样本中心,A选项,过点,所以A正确;B选项,不过点,所以B不正确;C选项,不过点,所以C不正确;故选A【点睛】本题主要考查线性回归直线,熟记回归直线的意义即可,属于常考题型.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】

利用等比数列的前n项和公式列出方程组,求出首项与公比,由此能求出该数列的通项公式.【详解】由题意,,不合题意舍去;当等比数列的前n项和为,即,解得,所以,故答案为:.【点睛】本题主要考查了等比数列的通项公式的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.12、0【解析】

画出可行域,分析目标函数得,当在y轴上截距最小时,即可求出的最小值.【详解】作出可行域如图:联立得化目标函数为,由图可知,当直线过点时,在y轴上的截距最小,有最小值为,故填.【点睛】本题主要考查了简单的线性规划,属于中档题.13、2019【解析】

根据二次方程根与系数的关系得出,再利用等差数列下标和的性质得到,然后利用等差数列求和公式可得出答案.【详解】由二次方程根与系数的关系可得,由等差数列的性质得出,因此,等差数列的前项的和为,故答案为.【点睛】本题考查等差数列的性质与等差数列求和公式的应用,涉及二次方程根与系数的关系,解题的关键在于等差数列性质的应用,属于中等题.14、1.【解析】

利用等差数列前项和公式能求出的值.【详解】解:∵等差数列的前项和为,若,

故答案为:.【点睛】本题考查等差数列前项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.15、【解析】

根据反正切函数的值域,结合条件得出的值.【详解】,且,因此,,故答案为:.【点睛】本题考查反正切值的求解,解题时要结合反正切函数的值域以及特殊角的正切值来求解,考查计算能力,属于基础题.16、【解析】试题分析:∵从7人中选2人共有C72=21种选法,从4个男生中选2人共有C42=6种选法∴没有女生的概率是=,∴至少有1名女生当选的概率1-=.考点:本题主要考查古典概型及其概率计算公式.点评:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】

(1)由余弦定理求得,从而得周长;(2)由余弦定理求得,由平方关系得,同理得,然后由两角差的余弦公式得结论.【详解】解:(1)在中,,由余弦定理,得,即,∴的周长为(2)由,得,由,得,于是.【点睛】本题考查余弦定理和两角差的余弦公式,考查同角间的三角函数关系式,属于基础题.18、(1)(2)【解析】

(1)设圆心坐标为,根据,求得,进而得到圆的方程;(2)由在圆上,则,得到,求得,进而求得圆的切线方程.【详解】(1)由题意,圆心在直线上,设圆心坐标为,由,即,所以,圆心,半径,圆的标准方程为.(2)设切线方程为,因为在圆上,所以,所以,又,所以,所以切线方程为,即,所以过的切线方程.【点睛】本题主要考查了圆的方程的求解,以及直线与圆的位置关系的应用,其中解答中熟记圆的方程的形式,以及圆的切线的性质是解答的关键,着重考查了推理与运算能力,属于基础题.19、(1);(2);(3)19杯.【解析】试题分析:(1)由“选取的组数据恰好是相邻天的数据”为事件,得出基本事件的总数,利用古典概型,即可求解事件的概率;(2)由数据求解,求由公式,求得,即可求得回归直线方程;(3)当,代入回归直线方程,即可作出预测的结论.试题解析:(Ⅰ)设“选取的组数据恰好是相邻天的数据”为事件,所有基本事件(其中,为月份的日期数)有种,事件包括的基本事件有,,,共种.所以.(Ⅱ)由数据,求得,.由公式,求得,,所以关于的线性回归方程为.(Ⅲ)当时,.所以该奶茶店这种饮料的销量大约为杯.20、(1)(2)见解析【解析】

(1)弄清题意,将相关数据代入齐奥尔科夫斯基公式:,即可得出各个等级的速度对应的的值;(2)弄清题意与相关名词,火箭起飞质量即为,将公式变形,分离出,解不等式即可得,的最小值为.【详解】(1)由题意可得,,,且,,当达到第一宇宙速度时,有,;当达到第二宇宙速度时,有,;当达到第三宇宙速度时,有,.(2)因为希望达到,但火箭起飞质量最大值为,,,即,得,的最小值为比较(1)中当达到第三宇宙速度时,;火箭起飞质量为,此时,达到,但火箭起飞质量最大值为,的最小值为.由以上说明实际意义为:不是火箭的推进剂质量越大,火箭达到的速度越大,当减少推进剂质量,增大火箭发动机喷流相对火箭的速度,同样可以达到想要的速度.【点睛】本题是一个典型的数学模型的应用问题,用数学的知识解决实际问题,这类题目关键是弄清题意;建立适当的函数模型进行解答.属于中档题.21、(1)0.15(2)2400(3)25人【解析】

(1)由频率分布直方图计算可得月收入在[3000,3500)内的频率;(2)分别计算小长方形的面积值,利用中位数的特点即可确定中位数的值;(3)首先确定10000人中月收入在[2500,3000]内的人数,然后结合分层抽样的特点可得应抽取的人数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论