版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年高一下数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,且,恒成立,则实数的取值范围是()A. B.C. D.2.在中,,,为的外接圆的圆心,则()A. B.C. D.3.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为A. B. C. D.4.已知数列满足,,则()A.1024 B.2048 C.1023 D.20475.已知的定义域为,若对于,,,,,分别为某个三角形的三边长,则称为“三角形函数”,下例四个函数为“三角形函数”的是()A.; B.;C.; D.6.函数的部分图像如图所示,则当时,的值域是()A. B.C. D.7.在前项和为的等差数列中,若,则=()A. B. C. D.8.已知菱形的边长为,则()A. B. C. D.9.已知数列满足,,则数列的前10项和为()A. B. C. D.10.在中,角,,所对的边分别为,,,若,,,则的值为()A. B. C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.观察下列式子:你可归纳出的不等式是___________12.在轴上有一点,点到点与点的距离相等,则点坐标为____________.13.数列满足,当时,,则是否存在不小于2的正整数,使成立?若存在,则在横线处直接填写的值;若不存在,就填写“不存在”_______.14.已知数列满足,,则______.15.设是等差数列的前项和,若,则___________.16.把二进制数1111(2)化为十进制数是______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是同一平面内的三个向量,其中.(Ⅰ)若,且,求;(Ⅱ)若,且与垂直,求实数的值.18.如图所示,一个半圆和长方形组成的铁皮,长方形的边为半圆的直径,为半圆的圆心,,,现要将此铁皮剪出一个三角形,使得,.(1)设,求三角形铁皮的面积;(2)求剪下的铁皮三角形的面积的最大值.19.如图,某住宅小区的平面图呈圆心角为的扇形,小区的两个出入口设置在点及点处,且小区里有一条平行于的小路.(1)已知某人从沿走到用了分钟,从沿走到用了分钟,若此人步行的速度为每分钟米,求该扇形的半径的长(精确到米)(2)若该扇形的半径为,已知某老人散步,从沿走到,再从沿走到,试确定的位置,使老人散步路线最长.20.已知三角形的三个顶点,,.(1)求线段的中线所在直线方程;(2)求边上的高所在的直线方程.21.在平面直角坐标系中,点,点P在x轴上(1)若,求点P的坐标:(2)若的面积为10,求点P的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】
将代数式与相乘,展开式利用基本不等式求出的最小值,将问题转化为解不等式,解出即可.【详解】由基本不等式得,当且仅当,即当时,等号成立,所以,的最小值为.由题意可得,即,解得.因此,实数的取值范围是,故选A.【点睛】本题考查基本不等式的应用,考查不等式恒成立问题以及一元二次不等式的解法,对于不等式恒成立问题,常转化为最值来处理,考查计算能力,属于中等题.2、A【解析】
利用正弦定理可求出的外接圆半径.【详解】由正弦定理可得,因此,,故选A.【点睛】本题考查利用正弦定理求三角形外接圆的半径,考查计算能力,属于基础题.3、C【解析】试题分析:设AC=x,则BC=12-x(0<x<12)矩形的面积S=x(12-x)>20∴x2-12x+20<0∴2<x<10由几何概率的求解公式可得,矩形面积大于20cm2的概率考点:几何概型4、C【解析】
根据叠加法求结果.【详解】因为,所以,因此,选C.【点睛】本题考查叠加法求通项以及等比数列求和,考查基本分析求解能力,属基础题.5、B【解析】由三角形的三边关系,可得“三角形函数”的最大值小于最小值的二倍,因为单调递增,无最大值和最小值,故排除A,,符合“三角形函数”的条件,即B正确,单调递增,最大值为4,最小值为1,故排除C,单调递增,最小值为1,最大值为,故排除D.故选B.点睛:本题以新定义为载体考查函数的单调性和最值;解决本题的关键在于正确理解“三角形函数”的含义,正确将问题转化为“判定函数的最大值和最小值间的关系”进行处理,充分体现转化思想的应用.6、D【解析】如图,,得,则,又当时,,得,又,得,所以,当时,,所以值域为,故选D.点睛:本题考查由三角函数的图象求解析式.本题中,先利用周期求的值,然后利用特殊点(一般从五点内取)求的值,最后根据题中的特殊点求的值.值域的求解利用整体思想.7、C【解析】
利用公式的到答案.【详解】项和为的等差数列中,故答案选C【点睛】本题考查了等差数列的前N项和,等差数列的性质,利用可以简化计算.8、D【解析】
由菱形可直接得出所求两向量的模长及夹角,直接利用向量数量积公式即可.【详解】由菱形的性质可以得出:所以选择D【点睛】直接考查向量数量积公式,属于简单题9、C【解析】
由判断出数列是等比数列,再求出,利用等比数列前项和公式求解即可.【详解】由,得,所以数列是以为公比的等比数列,又,所以,由等比数列前项和公式,.故选:C【点睛】本题主要考查等比数列的定义和等比数列前项和公式的应用,考查学生的计算能力,属于基础题.10、B【解析】
先利用面积公式得到,再利用余弦定理得到【详解】余弦定理:故选B【点睛】本题考查了面积公式和余弦定理,意在考查学生的计算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】
观察三个已知式子的左边和右边,第1个不等式左边可改写成;第2个不等式左边的可改写成,右边的可改写成;第3个不等式的左边可改写成;据此可发现第个不等式的规律.【详解】观察三个已知式子的左边和右边,第1个式子可改写为:,第2个式子可改写为:,第3个式子可改写为:,所以可归纳出第个不等式是:.故答案为:.【点睛】本题考查归纳推理,考查学生分析、解决问题的能力,属于基础题.12、【解析】
设点的坐标,根据空间两点距离公式列方程求解.【详解】由题:设,点到点与点的距离相等,所以,,,解得:,所以点的坐标为.故答案为:【点睛】此题考查空间之间坐标系中两点的距离公式,根据公式列方程求解点的坐标,关键在于准确辨析正确计算.13、70【解析】
构造数列,两式与相减可得数列{}为等差数列,求出,让=0即可求出.【详解】设两式相减得又数列从第5项开始为等差数列,由已知易得均不为0所以当n=70的时候成立,故答案填70.【点睛】如果递推式中出现和的形式,比如,可以尝试退项相减,即让取后,两式作差,和的部分因为相减而抵消,剩下的就好算了。14、1023【解析】
根据等比数列的定义以及前项和公式即可.【详解】因为所以,所以为首先为1公比为2的等比数列,所以【点睛】本题主要考查了等比数列的前项和:属于基础题.15、1.【解析】
由已知结合等差数列的性质求得,代入等差数列的前项和得答案.【详解】解:在等差数列中,由,得,,则,故答案为:1.【点睛】本题主要考查等差数列的通项公式,考查等差数列的性质,考查了等差数列前项和的求法,属于基础题.16、.【解析】
由二进制数的定义可将化为十进制数.【详解】由二进制数的定义可得,故答案为:.【点睛】本题考查二进制数化十进制数,考查二进制数的定义,考查计算能力,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】
(1)根据向量平行的相关性质以及、即可得出向量,然后根据向量的模长公式即可得出结果;(2)首先可根据、写出与的坐标表示,然后根据向量垂直可得,最后通过计算即可得出结果.【详解】(1)因为,,所以,,,所以.(2)因为,,所以,.因为与垂直,所以,即,.【点睛】本题考查向量平行以及向量垂直的相关性质,考查向量的坐标表示以及向量的模长公式,若、且,则,考查计算能力,是中档题.18、(1)三角形铁皮的面积为;(2)剪下的铁皮三角形的面积的最大值为.【解析】试题分析:(1)利用锐角三角函数求出和的长度,然后以为底边、以为高,利用三角形面积公式求出三角形的面积;(2)设,以锐角为自变量将和的长度表示出来,并利用面积公式求出三角形的面积的表达式,利用与之间的关系,令将三角形的面积的表达式表示为以为自变量的二次函数,利用二次函数的单调性求出三角形的面积的最大值,但是要注意自变量的取值范围作为新函数的定义域.试题解析:(1)由题意知,,,,即三角形铁皮的面积为;(2)设,则,,,,令,由于,所以,则有,所以,且,所以,故,而函数在区间上单调递增,故当时,取最大值,即,即剪下的铁皮三角形的面积的最大值为.考点:1.三角形的面积;2.三角函数的最值;3.二次函数的最值19、(1)445米;(2)在弧的中点处【解析】
(1)假设该扇形的半径为米,在中,利用余弦定理求解;(2)设设,在中根据正弦定理,用和表示和,进而利用和差公式和辅助角公式化简,再根据三角函数的性质求最值.【详解】(1)方法一:设该扇形的半径为米,连接.由题意,得(米),(米),在中,即,解得(米)方法二:连接,作,交于,由题意,得(米),(米),,在中,.(米)..在直角中,(米),(米).(2)连接,设,在中,由正弦定理得:,于是,则,所以当时,最大为,此时在弧的中点处.【点睛】本题考查正弦定理,余弦定理的实际应用,结合了三角函数的化简与求三角函数的最值.20、(1)(2).【解析】
(1)先求出BC中点的坐标,再求BC的中线所在直线的方程;(2)先求出AB的斜率,再求出边上的高所在的直线方程.【详解】(1)由题得BC的中点D的坐标为(2,-1),所以,所以线段的中线AD所在直线方程为即.(2)由题得,所以AB边上的高所在直线方程为,即.【点睛】本题主要考查直线方程的求法,意在考查学生对该知识的理解掌握水平,属于基础题
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年新科版八年级科学下册阶段测试试卷
- 2025年沪科版七年级物理上册阶段测试试卷含答案
- 2025年浙教版八年级科学下册阶段测试试卷
- 2025年鲁教五四新版高一地理上册阶段测试试卷
- 二零二五年度家政服务人员劳务派遣合同正规标3篇
- 2025年苏科版选择性必修3语文下册阶段测试试卷含答案
- 2025年外研版七年级地理上册阶段测试试卷
- 2025年外研衔接版选修4地理上册月考试卷
- 2024第三人民医院肉类配送服
- 二零二五年度宾馆租赁合同及客房维修保养协议3篇
- 麻醉药品、精神药品处方权资格考试试题(2024年)
- GB/T 31900-2024机织儿童服装
- 2024-2025学年冀教版数学五年级上册期末测试卷(含答案)
- 第二讲 七十五载迎盛世 砥砺前行续华章2024年形势与政策(课件)
- 浙江省杭州市西湖区2022-2023学年七年级上学期期末语文试题(含答案解析)
- 施工现场重大危险源公示牌
- 中国小儿急性上呼吸道感染相关临床指南的解读
- 苏教版二年级科学下册第3课《神奇的新材料》教学设计
- 中国传统图案纹样
- GB∕T 10596-2021 埋刮板输送机
- DLT5210.1-2021电力建设施工质量验收及评价规程
评论
0/150
提交评论