版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省襄州区四校2024届高二数学第一学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知a,b是互不重合直线,,是互不重合的平面,下列命题正确的是()A.若,,则B.若,,,则C.若,,则D.若,,,则2.若某群体中成员只用现金支付的概率为,既用现金支付也用非现金支付的概率为,则不用现金支付的概率为()A. B.C. D.3.甲、乙两组数的数据如茎叶图所示,则甲、乙的平均数、方差、极差及中位数中相同的是()A.极差 B.方差C.平均数 D.中位数4.已知直线,,点是抛物线上一点,则点到直线和的距离之和的最小值为()A.2 B.C.3 D.5.设函数的图象为C,则下面结论中正确的是()A.函数的最小正周期是B.图象C关于点对称C.函数在区间上是增函数D.图象C可由函数的图象向右平移个单位得到6.为了更好地研究双曲线,某校高二年级的一位数学老师制作了一个如图所示的双曲线模型.已知该模型左、右两侧的两段曲线(曲线与曲线)为某双曲线(离心率为2)的一部分,曲线与曲线中间最窄处间的距离为,点与点,点与点均关于该双曲线的对称中心对称,且,则()A. B.C. D.7.函数在单调递增的一个必要不充分条件是()A. B.C. D.8.已知抛物线,,点在抛物线上,记点到直线的距离为,则的最小值是()A.5 B.6C.7 D.89.关于x的方程在内有解,则实数m的取值范围()A. B.C. D.10.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前6项分别为1,5,11,21,37,61,则该数列的第7项为()A.95 B.131C.139 D.14111.椭圆的长轴长是短轴长的2倍,则离心率()A. B.C. D.12.复数的共轭复数是A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线具有相同的焦点,,且在第一象限交于点,设椭圆和双曲线的离心率分别为,,若,则的最小值为_______.14.在正项等比数列{an}中,若,与的等差中项为12,则等于_______.15.已知直线过点,,且是直线的一个方向向量,则__________.16.已知点,为抛物线:上不同于原点的两点,且,则的面积的最小值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)各项都为正数的数列的前项和为,且满足.(1)求数列的通项公式;(2)求;(3)设,数列的前项和为,求使成立的的最小值.18.(12分)在中,是的中点,,现将该平行四边形沿对角线折成直二面角,如图:(1)求证:;(2)求二面角的余弦值.19.(12分)已知椭圆的左、右焦点分别是,点P是椭圆C上任一点,若面积的最大值为,且离心率(1)求C的方程;(2)A,B为C的左、右顶点,若过点且斜率不为0的直线交C于M,N两点,证明:直线与的交点在一条定直线上20.(12分)已知,p:,q:(1)若p是q的充分不必要条件,求实数m的取值范围;(2)若,“p或q”为真命题,“p且q”为假命题,求实数x的取值范围21.(12分)在二项式的展开式中;(1)若,求常数项;(2)若第4项的系数与第7项的系数比为,求:①二项展开式中的各项的二项式系数之和;②二项展开式中各项的系数之和22.(10分)命题:函数有意义;命题:实数满足.(1)当且为真时,求实数的取值范围;(2)若是的充分不必要条件,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】根据线线,线面,面面位置关系的判定方法即可逐项判断.【题目详解】A:若,,则或a,故A错误;B:若,,则a⊥β,又,则a⊥b,故B正确;C:若,,则或α与β相交,故C错误;D:若,,,则不能判断α与β是否垂直,故D错误.故选:B.2、A【解题分析】利用对立事件的概率公式可求得所求事件的概率.【题目详解】由对立事件概率公式可知,该群体中的成员不用现金支付的概率为.故选:A.3、C【解题分析】根据茎叶图中数据的波动情况,可直接判断方差不同;根据茎叶图中的数据,分别计算极差、中位数、平均数,即可得出结果.【题目详解】由茎叶图可得:甲的数据更集中,乙的数据较分散,所以甲与乙的方差不同;甲的极差为;乙的极差为,所以甲与乙的极差不同;甲的中位数为,乙的中位数为,所以中位数不同;甲的平均数为,乙的平均数为,所以甲、乙的平均数相同;故选:C.4、C【解题分析】由抛物线的定义可知点到直线和的距离之和的最小值即为焦点到直线的距离.【题目详解】解:由题意,抛物线的焦点为,准线为,所以根据抛物线的定义可得点到直线的距离等于,所以点到直线和的距离之和的最小值即为焦点到直线的距离,故选:C.5、B【解题分析】化简函数解析式,求解最小正周期,判断选项A,利用整体法求解函数的对称中心和单调递增区间,判断选项BC,再由图象变换法则判断选项D.【题目详解】,所以函数的最小正周期为,A错;令,得,所以函数图象关于点对称,B正确;由,得,所以函数在上为增函数,在上为减函数,C错;函数的图象向右平移个单位得,D错.故选:B6、D【解题分析】依题意以双曲线的对称中心为坐标原点建系,设双曲线的方程为,根据已知求得,点纵坐标代入计算即可求得横坐标得出结果.【题目详解】以双曲线的对称中心为坐标原点,建立平面直角坐标系,因为双曲线的离心率为2,所以可设双曲线的方程为,依题意可得,则,即双曲线的方程为.因为,所以的纵坐标为18.由,得,故.故选:D.7、D【解题分析】求出导函数,由于函数在区间单调递增,可得在区间上恒成立,求出的范围,再根据充分必要条件的定义即可判断得解.【题目详解】由题得,函数在区间单调递增,在区间上恒成立,而在区间上单调递减,选项中只有是的必要不充分条件.选项AC是的充分不必要条件,选项B是充要条件.故选:D8、D【解题分析】先求出抛物线的焦点和准线,利用抛物线的定义将转化为的距离,即可求解.【题目详解】由已知得抛物线的焦点为,准线方程为,设点到准线的距离为,则,则由抛物线的定义可知∵,当点、、三点共线时等号成立,∴,故选:.9、A【解题分析】当时,显然不成立,当时,分离变量,利用导数求得函数的单调性与最值,即可求解.【题目详解】当时,可得显然不成立;当时,由于方程可转化为,令,可得,当时,,函数单调递增;当时,,函数单调递减,所以当时,函数取唯一的极大值,也是最大值,所以,所以,即,所以实数m的取值范围.故选:A.10、A【解题分析】利用已知条件,推出数列的差数的差组成的数列是等差数列,转化求解即可【题目详解】由题意可知,1,5,11,21,37,61,……,的差的数列为4,6,10,16,24,……,则这个数列的差组成的数列为:2,4,6,8,……,是一个等差数列,设原数列的第7项为,则,解得,所以原数列的第7项为95,故选:A11、D【解题分析】根据长轴长是短轴长的2倍,得到,利用离心率公式即可求得答案.【题目详解】∵,∴,故,故选:D12、B【解题分析】因,故其共轭复数.应选B.考点:复数的概念及运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由已知条件结合双曲线和椭圆的定义推出,由此能求出的最小值【题目详解】由题意设焦距为,椭圆长轴长为,双曲线实轴为,令在双曲线的右支上,由双曲线的定义,由椭圆定义,可得,,又,,可得,得,即,可得,则,当且仅当,上式取得等号,可得的最小值为故答案为:【题目点拨】本题考查椭圆和双曲线的性质,主要是离心率,解题时要熟练掌握双曲线、椭圆的定义,注意均值定理的合理运用14、128【解题分析】先根据条件利用等比数列的通项公式列方程组求出首项和公差,进而可得.【题目详解】设正项等比数列{an}的公比为,由已知,得,①,又,②,由①②得,故答案为:128.15、【解题分析】由题得,解方程组即得解.【题目详解】解:由题得,因为是直线的一个方向向量,所以,所以,所以.故答案为:16、【解题分析】设,,利用可得即可求得,利用两点间距离公式求出、,面积,利用基本不等式即可求最值.【题目详解】设,,由可得,解得:,,,,,所以,当且仅当时等号成立,所以的面积的最小值为,故答案为:.【题目点拨】关键点点睛:本题解题的关键点是设,坐标,采用设而不求的方法,将转化为,求出参数之间的关系,再利用基本不等式求的最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解题分析】(1)直接利用数列的递推关系式,结合等差数列的定义,即可求得数列的通项公式;(2)化简,结合裂项相消法求出数列的和;(3)利用分组法求得,结合,即可求得的最小值.【小问1详解】解:因为各项都为正数的数列的前项和为,且满足,当时,解得;当时,;两式相减可得,整理得(常数),故数列是以2为首项,2为公差的等差数列;所以.【小问2详解】解:由,可得,所以,所以.【小问3详解】解:由,可得,所以当为偶数时,,因为,且为偶数,所以的最小值为48;当为奇数时,,不存在最小的值,故当为48时,满足条件.18、(1)证明见解析(2)【解题分析】(1)先求出BD,通过勾股定理的逆定理得,再由面面垂直的性质得线面垂直,从而得线线垂直;(2)作出二面角,然后再解直角三形即可.【小问1详解】在中,,,由余弦定理有:,∴,∴,即.又∵二面角是直二面角,平面ABD平面BCD=BD,AB⊂平面ABD,∴AB⊥平面BCD.又CD⊂平面BCD,∴AB⊥CD.【小问2详解】因为点是的中点,在中,由(1)易知,.过点作垂直的延长线于,再连接.由(1)有AB⊥平面BCD,又平面BCD,所以,又,平面,平面,且,所以平面,又平面,所以,因此的大小即二面角的大小.而在中有,,可得,所以,所以.所以二面角的余弦值是.19、(1);(2)证明见解析.【解题分析】(1)用待定系数法求出椭圆的方程;(2)设直线MN的方程为x=my+1,设,用“设而不求法”表示出.由直线AM的方程为,直线BN的方程为,联立,解得:,即可证明直线AM与BN的交点在直线上.【小问1详解】由题意可得:,解得:,所以C的方程为.【小问2详解】由(1)得A(-2,0),B(2,0),F2(1,0),设直线MN的方程为x=my+1.设,由,消去y得:,所以.所以.因为直线AM的方程为,直线BN的方程为,二者联立,有,所以,解得:,直线AM与BN的交点在直线上.【题目点拨】(1)待定系数法可以求二次曲线的标准方程;(2)"设而不求"是一种在解析几何中常见的解题方法,可以解决直线与二次曲线相交的问题.20、(1)(2)或【解题分析】(1)根据命题对应的集合是命题对应的集合的真子集列式解得结果即可得解;(2)“p或q”为真命题,“p且q”为假命题,等价于与一真一假,分两种情况列式可得结果.【题目详解】(1)因为p:对应的集合为,q:对应的集合为,且p是q的充分不必要条件,所以,所以,解得.(2),当时,,因为“p或q”为真命题,“p且q”为假命题,所以与一真一假,当真时,假,所以,此不等式组无解;当真时,假,所以,解得或.综上所述:实数x的取值范围是或.【题目点拨】结论点睛:本题考查由充分不必要条件求参数取值范围,一般可根据如下规则转化:(1)若是的必要不充分条件,则对应集合是对应集合的真子集;(2)是的充分不必要条件,则对应集合是对应集合的真子集;(3)是的充分必要条件,则对应集合与对应集合相等;(4)是的既不充分又不必要条件,对的集合与对应集合互不包含21、(1)60(2)①1024;②1【解题分析】(1)根据二项式定理求解(2)根据二项式定理与条件求解,二项式系数之和为,系数和可赋值【小问1详解】若,则,(,…,9)令∴∴常数项为.【小问2详解】,(,…,),解得①②令,得系数和为22、(1);(2)【解题分析】(1)首先将命题,化简,然后由为真可得,均为真,取交
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 暑期继续教育学习总结
- 工厂月工作总结(10篇)
- 禁止焚烧秸秆倡议书8篇
- 某公司环境绿化管理制度
- 湖南省永州市(2024年-2025年小学五年级语文)人教版摸底考试(下学期)试卷及答案
- 机械能和内能教案
- 2023年高强2号玻璃纤维布资金需求报告
- 《停车场出场电子不停车缴费系统(ETC)碳减排核算方法(征求意见稿)》及编制说明
- 上海市市辖区(2024年-2025年小学五年级语文)人教版能力评测(下学期)试卷及答案
- 2024年广东公务员考试申论试题(县镇卷)
- 中等职业学校语文考试复习课件
- 小学一年级语文《有趣的汉字》原文、教案及教学反思(优秀3篇)
- 公司员工劳保用品发放标准和管理办法
- 小学学生发展多元化评价体系
- 高考高中常考化学方程式归纳题
- T-CCIAT 0044-2022 智慧园区以太全光网络建设技术规程
- 人间第一情-完整版PPT
- 高速公路工程施工安全标准化指南(安全技术分册)
- 四年级下册语文课件-第四单元 复习课件 (共30张PPT)部编版
- 机械设计课程设计说明书 11机电本 刘伟华
- 问卷1:匹兹堡睡眠质量指数量表(PSQI)
评论
0/150
提交评论