版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市第五十八中学2022年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…用S1、S2分别表示乌龟和兔子所行的路程,t为时间,则与故事情节相吻合是(
)参考答案:B2.若定义在上的偶函数和奇函数满足,则()A
B
C
D
参考答案:D3.设,二次函数的图像可能是(
)参考答案:D略4.幂函数y=xa(α是常数)的图象()A.一定经过点(0,0) B.一定经过点(1,1)C.一定经过点(﹣1,1) D.一定经过点(1,﹣1)参考答案:B【考点】幂函数的图象.【专题】函数的性质及应用.【分析】利用幂函数的图象与性质及1α=1即可得出.【解答】解:取x=1,则y=1α=1,因此幂函数y=xa(α是常数)的图象一定经过(1,1)点.故选B.【点评】熟练掌握幂函数的图象与性质及1α=1是解题的关键.5.已知集合,,若,则实数的取值范围()A.
B.C.
D.参考答案:A6.下列命题正确的是()A.单位向量都相等B.若与共线,与共线,则与共线C.若,则D.若与都是单位向量,则参考答案:CA选项,单位向量模相等,但方向不一定相同,故A错;B选项,因为零向量与任意向量共线,故B错;C选项,对等式两边平方,易得,故C正确;D选项,与夹角为60°时,,故D错误.故选:C
7.已知球的直径SC=4,A,B是该球球面上的两点,AB=,∠ASC=∠BSC=30°,则棱锥S﹣ABC的体积为()A.3 B.2 C. D.1参考答案:C【考点】棱柱、棱锥、棱台的体积.【分析】设球心为点O,作AB中点D,连接OD,CD,说明SC是球的直径,利用余弦定理,三角形的面积公式求出S△SCD,和棱锥的高AB,即可求出棱锥的体积.【解答】解:设球心为点O,作AB中点D,连接OD,CD因为线段SC是球的直径,所以它也是大圆的直径,则易得:∠SAC=∠SBC=90°所以在Rt△SAC中,SC=4,∠ASC=30°得:AC=2,SA=2又在Rt△SBC中,SC=4,∠BSC=30°得:BC=2,SB=2则:SA=SB,AC=BC因为点D是AB的中点所以在等腰三角形ASB中,SD⊥AB且SD===在等腰三角形CAB中,CD⊥AB且CD===又SD交CD于点D所以:AB⊥平面SCD即:棱锥S﹣ABC的体积:V=AB?S△SCD,因为:SD=,CD=,SC=4所以由余弦定理得:cos∠SDC=(SD2+CD2﹣SC2)=(+﹣16)==则:sin∠SDC==由三角形面积公式得△SCD的面积S=SD?CD?sin∠SDC==3所以:棱锥S﹣ABC的体积:V=AB?S△SCD==故选C8.下列四组函数中,表示同一函数的是
()
A.
B.C.
D.参考答案:C略9.已知△ABC中,A、B、C分别是三个内角,已知=(a–b)sinB,又△ABC的外接圆半径为,则角C为()A.30°
B.45°
C.60°
D.90°参考答案:解析:C
,故R2(sin2A–sin2C)=(a–b)RsinB,即a2–c2=(a–b)b,a2+b2–c2=ab,cosC=,C=60°.10.函数在以下哪个区间内一定有零点(
)A.
B.
C.
D.参考答案:B略二、填空题:本大题共7小题,每小题4分,共28分11.关于下列命题:①函数在整个定义域内是增函数;②函数是偶函数;③函数的一个对称中心是;④函数在闭区间上是增函数.写出所有正确的命题的序号:
.参考答案:③④略12.已知函数,同时满足:;,,,求的值.参考答案:解析:令得:.再令,即得.若,令时,得不合题意,故;
,即,所以;
那么,13.某航空公司规定,乘客所携带行李的重量(kg)与其运费(元)由图所示的函数图象确定,那么乘客免费可携带行李的最大重量为
参考答案:略14.在△ABC中,角A,B,C所对的边分别为a,b,c.已知,,,则角C=________.参考答案:由1+=和正弦定理得,cosA=,∴A=60°.由正弦定理得,=,∴sinC=.又c<a,∴C<60°,∴C=45°.
15.从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。由图中数据可知a=
.若要从身高在[120,130),[130,140),[140,150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140,150]内的学生中选取的人数应为
.参考答案:,316.甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,则至少有一个红球的概率为.参考答案:【考点】CB:古典概型及其概率计算公式.【分析】至少有一个红球的对立事件为取到两个白球,由此利用对立事件概率计算公式能求出至少有一个红球的概率.【解答】解:∵甲、乙两个箱子里各装有2个红球和1个白球,现从两个箱子中随机各取一个球,至少有一个红球的对立事件为取到两个白球,∴至少有一个红球的概率为:p=1﹣=.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意对立事件概率计算公式的合理运用.17.在△ABC中,若b2+c2﹣a2=bc,则A=
.参考答案:60°【考点】余弦定理.【分析】利用余弦定理表示出cosA,把已知的等式代入求出cosA的值,由A为三角形的内角,利用特殊角的三角函数值即可求出A的度数.【解答】解:∵b2+c2﹣a2=bc,∴根据余弦定理得:cosA===,又A为三角形的内角,则A=60°.故答案为:60°【点评】此题考查了余弦定理,以及特殊角的三角函数值,利用了整体代入得数学思想,熟练掌握余弦定理是解本题的关键.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知向量=(1,),=(﹣2,0).(1)求|﹣|;(2)求向量﹣与的夹角;(3)当t∈R时,求|﹣t|的取值范围.参考答案:【考点】平面向量数量积的运算.【分析】(1)由向量的加减运算和向量的模的公式,计算即可得到所求值;(2)求得(﹣)?=2﹣?=6,由向量的数量积的夹角公式,计算即可得到所求值;(3)运用向量的平方即为模的平方,化简可得关于t的二次函数,配方即可得到最小值,即可得到所求范围.【解答】解:(1)由向量=(1,),=(﹣2,0),所以﹣=(1,)﹣(﹣2,0)=(3,),|﹣|==2;(2)由(﹣)?=2﹣?=4﹣(﹣2)=6,可得cos<(﹣),>===,由0≤<(﹣),>≤π,所以向量﹣与的夹角为;(3)因为|﹣t|2=2﹣2t?+t22=4t2+4t+4=4(t+)2+3,当t=﹣时,上式取得最小值3.所以当t∈R时,|﹣t|的取值范围是.19.已知全集,若,,求实数、的值。参考答案:因为,,所以,
由已知得,解得。
因此,或,。20.(12分)已知:函数
,在区间上有最大值4,最小值1,设函数.(1)求、的值及函数的解析式;(2)若不等式在时恒成立,求实数的取值范围;(3)如果关于的方程有三个相异的实数根,求实数的取值范围.参考答案:(1),(4分)(2)(4分)(3)(4分)
略21.如图所示,近日我渔船编队在岛A周围海域作业,在岛A的南偏西20°方向有一个海面观测站B,某时刻观测站发现有不明船只向我渔船编队靠近,现测得与B相距31海里的C处有一艘海警船巡航,上级指示海警船沿北偏西40°方向,以40海里/小时的速度向岛A直线航行以保护我渔船编队,30分钟后到达D处,此时观测站测得B,D间的距离为21海里.(Ⅰ)求的值;(Ⅱ)试问海警船再向前航行多少分钟方可到岛A?参考答案:(Ⅰ);(Ⅱ)海警船再向前航行22.5分钟即可到达岛.【分析】(Ⅰ)在中,根据余弦定理求得余弦值,再求正弦值得到答案.(Ⅱ)首先利用和差公式计算,中,由正弦定理可得长度,最后得到时间.【详解】(Ⅰ)由已知可得,中,根据余弦定理求得,∴.(Ⅱ)由已知可得,∴.中,由正弦定理可得,∴分钟.即海警船再向前航行22.5分钟即可到达岛.【点睛】本题考查了正余弦定理的实际应用,意在考查学生的建模能力,实际应用能力和计算能力.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 全科医生基层实践培训
- 医疗器械高值耗材
- 【数学】空间向量与立体几何同步练习-2024-2025学年高二上学期数学人教A版(2019)选择性必修第一册
- 动脉瘤的护理
- 企业品牌战略培训
- 2024标准广告公司合同书
- 2024至2030年中国导电导热胶带数据监测研究报告
- 2024年玉米免耕播种机项目评估分析报告
- 2023年植入性支架项目评价分析报告
- 2024至2030年中国自动式温度调节阀数据监测研究报告
- 深圳大学《西方文明史》2023-2024学年第一学期期末试卷
- 2024-2030年中国肉牛养殖产业前景预测及投资效益分析报告权威版
- 2024年同等学力申硕英语考试真题
- 河北省石家庄市长安区2023-2024学年五年级上学期期中英语试卷
- 初中数学30种模型(几何知识点)
- 多能互补规划
- 天一大联考●皖豫名校联盟2024-2025学年高三上学期10月月考试卷语文答案
- GB/T 44291-2024农村产权流转交易 网络交易平台服务规范
- 全国农业技术推广服务中心公开招聘应届毕业生补充(北京)高频难、易错点500题模拟试题附带答案详解
- 公司研发项目审核管理制度
- 山东省名校考试联盟2024-2025学年高一上学期10月联考数学试卷
评论
0/150
提交评论