




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省保定市安国园方中学2021年高二数学文上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知椭圆的对称轴是坐标轴,离心率为,长轴长为12,则椭圆方程为()参考答案:C2.从14名志愿者中选12人参加某会议的接待工作,若每天安排早、中、晚三班,每班4人,每人每天最多值一班,则会议开幕式当天不同的排班种数为(
)A.
B.
C.
D.参考答案:D略3.函数的图象大致是(
)
参考答案:A4.已知数列满足,,则的值为
(A)
(B)
(C)
(D)参考答案:C5.设,则“”是“”的()A.充分而不必要条件
B.必要而不充分条件C.充要条件
D.既不充分也不必要条件参考答案:B6.设函数f(x)定义在实数集上,它的图象关于直线x=1对称,且当x≥1时,f(x)=3x-1,则()A.
B.
C.
D.参考答案:B略7.函数f(x)=x3-ax+1在区间(1,+)内是增函数,则实数a的取值范围是(
)
A.a<3
B.a>3
C.a3;
D.a3参考答案:C8.在复平面内,复数对应的点的坐标为
(
)
A(-1,1)
B(1,1)
C(1,-1)
D(-1,-1)参考答案:A9.若集合A={x|x2﹣x﹣2<0},且A∪B=A,则集合B可能是()A.{0,1} B.{x|x<2} C.{x|﹣2<x<1} D.R参考答案:A【考点】集合的包含关系判断及应用.【分析】化简集合A,根据集合的基本运算A∪B=A,即可求B.【解答】解:集合A={x|x2﹣x﹣2<0}={x|﹣1<x<2},∵A∪B=A,∴B?A.考查各选项,{0,1}?A.故选A.10.设四棱锥P﹣ABCD的底面是边长为的正方形,侧棱长均为,若该棱锥的五个顶点都在球O的球面上,则球O的表面积为()A.25π B.32π C.36π D.50π参考答案:A【考点】球内接多面体;球的体积和表面积.【专题】计算题;方程思想;综合法;空间位置关系与距离.【分析】设AC、BD的交点为F,连接PF,则PF是四棱锥P﹣ABCD的高且四棱锥P﹣ABCD的外接球球心O在PF上.由正四棱锥的性质,结合题中数据算出AF=2且PF=4,Rt△AOF中根据勾股定理,得R2=22+(4﹣R)2,解之得R=2.5,利用球的表面积公式即可算出经过该棱锥五个顶点的球面面积.【解答】解:设AC、BD的交点为F,连接PF,则PF是四棱锥P﹣ABCD的高,根据球的对称性可得四棱锥P﹣ABCD的外接球球心O在直线PF上,∵正方形ABCD边长为2,∴AF=AB=2Rt△PAF中,PF=4连接OA,设OA=0P=R,则Rt△AOF中AO2=AF2+OF2,即R2=22+(4﹣R)2解之得R=2.5∴四棱锥P﹣ABCD的外接球表面积为S=4πR2=4π×2.52=25π故选:A.【点评】本题给出正四棱锥,求它的外接球的表面积,着重考查了正四棱锥的性质、勾股定理和球的表面积公式等知识,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.若双曲线与圆有公共点,则实数的取值范围是
参考答案:12.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:队员i123456三分球个数右图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填
,输出的=
.参考答案:13.已知向量若,则
.参考答案:考点:向量的数量积的运算.14.下列有关命题的说法中,错误的是
(填所有错误答案的序号).①命题“若,则”的逆否命题为“若,则”;②“”是“”的充分不必要条件;③若为假命题,则、均为假命题.参考答案:③15.若幂函数的图象经过点(2,),则f()=______.参考答案:【分析】利用待定系数法求出函数的解析式,再计算的值.【详解】设幂函数f(x)=xα,α∈R;其函数图象过点(2,),∴2α,解得α;∴f(x),∴.故答案为:.【点睛】本题考查了利用待定系数法求出函数的解析式与计算函数值的应用问题,是基础题目.16.如图为某天通过204国道某测速点的汽车时速频率分布直方图,则通过该测速点的300辆汽车中时速在[60,80)的汽车大约有辆.参考答案:150由频率分布直方图求出通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率,由此能求出通过该测速点的300辆汽车中时速在[60,80)的汽车大约有多少辆.解:由频率分布直方图得:通过该测速点的300辆汽车中时速在[60,80)的汽车所占频率为(0.020+0.030)×10=0.5,∴通过该测速点的300辆汽车中时速在[60,80)的汽车大约有:300×0.5=150辆.故答案为:150.17.若的解集为R,则的取值范围是_____________________.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在△ABC中,已知tanA=,tanB=.(1)若△ABC最大边的长为,求最小边的长;(2)若△ABC的面积为6,求AC边上的中线BD的长.参考答案:【考点】正弦定理;余弦定理.【专题】计算题;转化思想;分析法;解三角形.【分析】(1)利用tanC=﹣tan(A+B)=﹣1,求出内角C的大小,可得AB=,BC为所求,求出sinA,再利用正弦定理即可求出最小边的边长.(2)由已知及(1)可得sinB=,sinA=,sinC=,由正弦定理可得S△ABC=absinC=(2RsinA)×(2RsinB)×sinC=6,解得R的值,从而可求b=6,a=4,利用余弦定理即可求得BD的值.【解答】解:(1)∵C=π﹣(A+B),tanA=,tanB=,∴tanC=﹣tan(A+B)=﹣=﹣1,又∵0<C<π,∴C=;∴△ABC最大边为AB,且AB=,最小边为BC,由tanA==,sin2A+cos2A=1且A∈(0,),得sinA=.∵,∴BC=AB?=.即最小边的边长为.(2)由tanB==,sin2B+cos2B=1且B∈(0,),得sinB=,由(1)可得:sinA=,sinC=,∵由已知及正弦定理可得:S△ABC=absinC=(2RsinA)×(2RsinB)×sinC=6,整理可得:R2×××=6,解得:R=2,b=AC=2RsinB=6,a=2RsinA=4,∴由余弦定理可得:BD===.【点评】本题考查正弦定理,余弦定理,同角三角函数基本关系式的应用,考查和角的正切公式,考查学生的计算能力和转化思想,属于中档题.19.已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.(1)当m=2时,求AB;(2)若A∩B=[1,3],求实数m的值;(3)若A??RB,求实数m的取值范围.参考答案:略20.(本小题满分12分)如图所示,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(1)证明:CD⊥平面PAE;(2)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD的体积.参考答案:(1)如图所示,连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5.又AD=5,E是CD的中点,所以CD⊥AE.∵PA⊥平面ABCD,CD?平面ABCD,所以PA⊥CD.而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(2)过点B作BG∥CD,分别与AE,AD相交于F,G,连接PF.由(1)CD⊥平面PAE知,BG⊥平面PAE.于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA为直线PB与平面ABCD所成的角.AB=4,AG=2,BG⊥AF,由题意,知∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD,所以四边形BCDG是平行四边形,故GD=BC=3.于是AG=2.在Rt△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16,所以四棱锥P-ABCD的体积为V=×S×PA=×16×=.21.(本小题6分)
如图,已知—正三棱锥P-ABC的底面棱长AB=3,高PO=,求这个正三棱锥的表面积.参考答案:22.已知椭圆的左、右焦点分别为F1、F2,四个顶点分别为为A、B、C、D,且四边形F1AF2B是边长为2的正方形,动点M满足MD⊥CD,连接CM,交椭圆于点P.(1)求椭圆的方程;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国电木柄厨具行业投资前景及策略咨询研究报告
- 2025年中国湿式贴合机行业投资前景及策略咨询研究报告
- 2025年中国油脂喷涂机行业投资前景及策略咨询研究报告
- 2025年中国正负压两极气流干燥机行业投资前景及策略咨询研究报告
- 2025年中国机纺石棉线行业市场调查、投资前景及策略咨询报告
- 2025年中国抗菌清血净化面膜行业市场调查、投资前景及策略咨询报告
- 施工现场派工管理制度
- 专业健身俱乐部管理制度
- 核酸采样感染管理制度
- 丹东市公务车辆管理制度
- 2025年浙江杭州钱塘区和达能源有限公司招聘笔试冲刺题(带答案解析)
- 2025年衣物清洁多元化发展趋势白皮书-天猫家清第一财经商业数据中心
- 冷链物流园建设项目投融资与财务方案
- 2024统编版七年级道德与法治下册期末测试卷(含答案)
- 酒店经销商合同协议书
- 转让钓场合同协议书
- 医院感染教学课件
- 叉车考试试题模拟100题及答案
- 《全球教育资源库》课件
- 2025年中考生物模拟测试卷及答案
- 慢性胃炎考试题及答案
评论
0/150
提交评论