




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,在△ABC中,点D为BC的中点,连接AD,过点C作CE∥AB交AD的延长线于点E,下列说法错误的是()A.△ABD≌△ECDB.连接BE,四边形ABEC为平行四边形C.DA=DED.CE=CA2.对某班学生在家里做家务的时间进行调查后,将所得的数据分成4组,第一组的频率是0.16,第二、三组的频率之和为0.74,则第四组的频率是()A.0.38 B.0.30 C.0.20 D.0.103.在、、、、中,分式的个数是()A.2 B.3 C.4 D.54.如图,一次函数y=﹣x+4的图象与两坐标轴分别交于A、B两点,点C是线段AB上一动点(不与点A、B重合),过点C分别作CD、CE垂直于x轴、y轴于点D、E,当点C从点A出发向点B运动时,矩形CDOE的周长()A.逐渐变大 B.不变C.逐渐变小 D.先变小后变大5.用反证法证明“在中,,则是锐角”,应先假设()A.在中,一定是直角 B.在中,是直角或钝角C.在中,是钝角 D.在中,可能是锐角6.下列说法正确的是()A.某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是2℃B.一组数据2,2,3,4,5,5,5,这组数据的众数是2C.小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是121分D.一组数据2,2,3,4,这组数据的中位数是2.57.在学习平行四边形时,数学兴趣学习小组设计并组织了“生活中的平行四边形”比赛,全班同学的比赛结果统计如下表所示,则得分的众数和中位数分别为()A.70分,70分 B.80分,80分C.70分,80分 D.80分,70分8.下列函数关系式:①y=-2x,②y=−,③y=-2x2,④y=2,⑤y=2x-1.其中是一次函数的是()A.①⑤ B.①④⑤ C.②⑤ D.②④⑤9.对于代数式(为常数),下列说法正确的是()①若,则有两个相等的实数根②存在三个实数,使得③若与方程的解相同,则A.①② B.①③ C.②③ D.①②③10.若,则下列不等式不成立的是()A. B. C. D.11.在函数y=1x+2中,自变量A.x≠﹣2 B.x>﹣2 C.x≠0 D.x≠212.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣1二、填空题(每题4分,共24分)13.如图,四边形是一块正方形场地,小华和小芳在边上取定一点,测量知,,这块场地的对角线长是________.14.两个全等的直角三角尺如图所示放置在∠AOB的两边上,其中直角三角尺的短直角边分别与∠AOB的两边上,两个直角三角尺的长直角边交于点P,连接OP,且OM=ON,若∠AOB=60°,OM=6,则线段OP=______.15.计算:3xy2÷=_______.16.如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0),
C(2,2),则△ABC的面积是________
.17.张师傅驾车从甲地到乙地匀速行驶,已知行驶中油箱剩余油量y(升)与行驶时间t(小时)之间的关系用如图的线段AB表示,根据这个图象求出y与t之间的函数关系式为y=﹣7.5t+25,那么函数y=﹣7.5t+25中的常数﹣7.5表示的实际意义是_____.18.如图所示,四边形ABCD为矩形,点O为对角线的交点,∠BOC=120°,AE⊥BO交BO于点E,AB=4,则BE等于_____.三、解答题(共78分)19.(8分)问题探究(1)请在图①中作出两条直线,使它们将圆面四等分;(2)如图②,是正方形内一定点,请在图②中作出两条直线(要求其中一条直线必须过点),使它们将正方形的面积四等分:问题解决(3)如图③,在四边形中,,点是的中点如果,且,那么在边上足否存在一点,使所在直线将四边形的面积分成相等的两部分?若存在,求出的长:若不存在,说明理由.20.(8分)《九章算术》卷九“勾股”中记载:今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问霞长几何.注释:今有正方形水池边长1丈,芦苇生长在中央,长出水面1尺.将芦苇向池岸牵引,恰好与水岸齐,问芦苇的长度(一丈等于10尺).解决下列问题:(1)示意图中,线段的长为______尺,线段的长为______尺;(2)求芦苇的长度.21.(8分)如图1,四边形ABCD中,AD//BC,∠ADC=90°,AD=8,BC=CD=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ,设运动时间为t秒.(1)连接AN、CP,当t为何值时,四边形ANCP为平行四边形;(2)求出点B到AC的距离;(3)如图2,将ΔAQM沿AD翻折,得ΔAKM,是否存在某时刻t,使四边形AQMK为菱形,若存在,求t的值;若不存在,请说明理由22.(10分)分解因式:(1);(2)。23.(10分)先化简,再求值:(1﹣)÷,其中x=+1.24.(10分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获利润100元,每生产一个乙种产品可获利润180元.在这10名工人中,如果要使此车间每天所获利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适.25.(12分)设每个小正方形网格的边长为1,请在网格内画出,使它的顶点都在格点上,且三边长分别为2,,.(1)求的面积;(2)求出最长边上的高.26.如图,四边形是矩形纸片且,对折矩形纸片,使与重合,折痕为,展平后再过点折叠矩形纸片,使点落在上的点处,折痕与相交于点,再次展开,连接,.(1)连接,求证:是等边三角形;(2)求,的长;(3)如图,连接将沿折叠,使点落在点处,延长交边于点,已知,求的长?
参考答案一、选择题(每题4分,共48分)1、D【解析】
根据平行线的性质得出∠B=∠DCE,∠BAD=∠E,然后根据AAS证得△ABD≌△ECD,得出AD=DE,根据对角线互相平分得到四边形ABEC为平行四边形,CE=AB,即可解答.【详解】解:∵CE∥AB,∴∠B=∠DCE,∠BAD=∠E,在△ABD和△ECD中,∴△ABD≌△ECD(AAS),∴DA=DE,AB=CE,∵AD=DE,BD=CD,∴四边形ABEC为平行四边形,故选:D.【点睛】本题考查了平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解决本题的关键是证明△ABD≌△ECD.2、D【解析】
根据各组频率之和为1即可求出答案.【详解】解:第四组的频率为:,故选:.【点睛】本题考查频率的性质,解题的关键是熟练运用频率的性质,本题属于基础题型.3、B【解析】
形如(A、B是整式,B中含有字母)的式子叫做分式.其中A叫做分式的分子,B叫做分式的分母.根据分式的定义即可判断.【详解】在、、、、中,、、是分式,答案选B.【点睛】判断一个式子是否是分式,不要看式子是否是的形式,关键要满足:分式的分母中必须含有字母,分子分母均为整式.无需考虑该分式是否有意义,即分母是否为零.4、B【解析】
根据一次函数图象上点的坐标特征可设出点C的坐标为(m,-m+4)(0<m<4),根据矩形的周长公式即可得出C矩形CDOE=1,此题得解.【详解】解:设点C的坐标为(m,-m+4)(0<m<4),则CE=m,CD=-m+4,∴C矩形CDOE=2(CE+CD)=1.故选B.【点睛】本题考查了一次函数图象上点的坐标特征以及矩形的性质,根据一次函数图象上点的坐标特征设出点C的坐标是解题的关键.5、B【解析】
假设命题的结论不成立或假设命题的结论的反面成立,然后推出矛盾,说明假设错误,结论成立.【详解】解:用反证法证明命题“在中,,则是锐角”时,应先假设在中,是直角或钝角.故选:B.【点睛】本题考查反证法,记住反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.6、D【解析】
直接利用中位数的定义,众数的定义和平均数的求法、极差的定义分别分析得出答案【详解】A、某日最低气温是–2℃,最高气温是4℃,则该日气温的极差是6℃,故错误B、一组数据2,2,3,4,5,5,5,这组数据的众数是5,故错误;C、小丽的三次考试的成绩是116分,120分,126分,则小丽这三次考试平均数是120.6分,故此选项错误D、一组数据2,2,3,4,这组数据的中位数是2.5,故此选项正确;故选D【点睛】此题考查中位数的定义,众数的定义和平均数的求法、极差的定义,掌握运算法则是解题关键7、C【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:∵70分的有12人,人数最多,∴众数为70分;处于中间位置的数为第20、21两个数,都为80分,中位数为80分.故选:C.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8、A【解析】
根据一次函数的定义条件进行逐一分析即可.【详解】解:①y=-2x是一次函数;②y=−自变量次数不为1,故不是一次函数;③y=-2x2自变量次数不为1,故不是一次函数;④y=2是常函数;⑤y=2x-1是一次函数.所以一次函数是①⑤.故选:A.【点睛】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.9、B【解析】
根据根的判别式判断①;根据一元二次方程(为常数)最多有两个解判断②;将方程的解代入即可判断③.【详解】解:①方程有两个相等的实数根.①正确:②一元二次方程(为常数)最多有两个解,②错误;③方程的解为,将x=-2代人得,,③正确.故选:B.【点睛】本题考查的知识点是一元二次方程根的情况,属于比较基础的题目,易于掌握.10、C【解析】
直接根据不等式的性质进行分析判断即可得到答案.【详解】A.,则a是负数,可以看成是5<6两边同时加上a,故A选项成立,不符合题意;B.是不等式5<6两边同时减去a,不等号不变,故B选项成立,不符合题意;C.5<6两边同时乘以负数a,不等号的方向应改变,应为:,故选项C不成立,符合题意;D.是不等式5<6两边同时除以a,不等号改变,故D选项成立,不符合题意.故选C.【点睛】本题考查的实际上就是不等式的基本性质:不等式的两边都加上(或减去)同一个数(或式子)不等号的方向不变;不等式两边同乘以(或除以)同一个正数,不等号的方向不变;不等式两边同乘以(或除以)同一个负数,不等号的方向改变.11、A【解析】
根据分式有意义的条件是分母不为2;分析原函数式可得关系式x+1≠2,即可得答案.【详解】根据题意可得x+1≠2;解得x≠-1.故选A.【点睛】本题主要考查函数自变量的取值范围和分式有意义的条件,当函数表达式是分式时,考虑分式的分母不能为2.12、B【解析】
根据二次根式有意义的条件判断即可.【详解】解:由题意得,x﹣1≥0,解得,x≥1,故选:B.【点睛】本题主要考查二次根式有意义的条件,熟悉掌握是关键.二、填空题(每题4分,共24分)13、40m【解析】
先根据勾股定理求出BC,故可得到正方形对角线的长度.【详解】∵,∴,∴对角线AC=.故答案为:40m.【点睛】此题主要考查利用勾股定理解直角三角形,解题的关键是熟知勾股定理的运用.14、【解析】
根据HL定理证明,求得,根据余弦求解即可;【详解】∵OM=ON,OP=OP,,∴,∵∠AOB=60°,∴,∵OM=6,∴.故答案是.【点睛】本题主要考查了直角三角形的性质应用,结合三角函数的应用是解题的关键.15、【解析】分析:根据分式的运算法则即可求出答案.详解:原式=3xy2•=故答案为.点睛:本题考查了分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.16、1【解析】
利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】解:△ABC的面积=3×4-×4×2-×3×1-×1×3=12-4-1.1-1.1=1.故答案为1【点睛】本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.17、表示每小时耗油7.5升【解析】
根据图像可知出发时油箱内有油25升,当行驶2小时时剩油10升,可求出每小时耗油量为7.5升.所以﹣7.5表示表示每小时耗油7.5升.【详解】由图象可知,t=0时,y=25,所以汽车出发时油箱原有油25,又经过2小时,汽车油箱剩余油量10升,即2小时耗油25-10=15升,15÷2=7.5升,故答案为:表示每小时耗油7.5升【点睛】本题考查一次函数的定义,熟练掌握一次函数的定义与性质是解题关键.18、1【解析】
根据四边形ABCD是矩形,可知因为所以△AOB是等边三角形,由三线合一性质可知的长度【详解】∵四边形ABCD是矩形,∴△AOB是等边三角形,故答案为1.【点睛】本题主要考查了矩形的性质,等边三角形的性质,熟知矩形的对角线相等且相互平分和等边三角形三线合一的性质是解题关键.三、解答题(共78分)19、(1)答案见解析;(2)答案见解析;(3)存在,BQ=b【解析】
(1)画出互相垂直的两直径即可;(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,根据三角形的面积公式和正方形的性质求出即可;(3)当BQ=CD=b时,PQ将四边形ABCD的面积二等份,连接BP并延长交CD的延长线于点E,证△ABP≌△DEP求出BP=EP,连接CP,求出S△BPC=S△EPC,作PF⊥CD,PG⊥BC,由BC=AB+CD=DE+CD=CE,求出S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP,即可得出S四边形ABQP=S四边形CDPQ即可.【详解】解:(1)如图1所示,(2)连接AC、BD交于O,作直线OM,分别交AD于P,交BC于Q,过O作EF⊥OM交DC于F,交AB于E,则直线EF、OM将正方形的面积四等分,理由是:∵点O是正方形ABCD的对称中心,∴AP=CQ,EB=DF,在△AOP和△EOB中∵∠AOP=90°-∠AOE,∠BOE=90°-∠AOE,∴∠AOP=∠BOE,∵OA=OB,∠OAP=∠EBO=45°,∴△AOP≌△EOB,∴AP=BE=DF=CQ,设O到正方形ABCD一边的距离是d,则(AP+AE)d=(BE+BQ)d=(CQ+CF)d=(PD+DF)d,∴S四边形AEOP=S四边形BEOQ=S四边形CQOF=S四边形DPOF,直线EF、OM将正方形ABCD面积四等份;(3)存在,当BQ=CD=b时,PQ将四边形ABCD的面积二等份,理由是:如图③,连接BP并延长交CD的延长线于点E,∵AB∥CD,∴∠A=∠EDP,∵在△ABP和△DEP中∴△ABP≌△DEP(ASA),∴BP=EP,连接CP,∵△BPC的边BP和△EPC的边EP上的高相等,又∵BP=EP,∴S△BPC=S△EPC,作PF⊥CD,PG⊥BC,则BC=AB+CD=DE+CD=CE,由三角形面积公式得:PF=PG,在CB上截取CQ=DE=AB=a,则S△CQP=S△DEP=S△ABP∴S△BPC-S△CQP+S△ABP=S△CPE-S△DEP+S△CQP即:S四边形ABQP=S四边形CDPQ,∵BC=AB+CD=a+b,∴BQ=b,∴当BQ=b时,直线PQ将四边形ABCD的面积分成相等的两部分.【点睛】本题考查了正方形性质,菱形性质,三角形的面积等知识点的应用,主要考查学生综合运用性质进行推理的能力,注意:等底等高的三角形的面积相等.20、(1)5,1;(2)芦苇的长度为13尺.【解析】
(1)直接利用题意结合图形得出各线段长;(2)利用勾股定理得出AG的长进而得出答案.【详解】(1)线段AF的长为5尺,线段EF的长为1尺;故答案为:5,1;(2)设芦苇的长度x尺,则图中AG=x,GF=x−1,AF=5,在Rt△AGF中,∠AFC=90∘,由勾股定理得AF+FG=AG.所以5+(x−1)=x,解得x=13,答:芦苇的长度为13尺.【点睛】此题考查勾股定理,解题关键在于得出AG的长.21、(1)当t=2时,四边形ANCP为平行四边形;(2)点B到AC的距离185;(3)存在,t=1,使四边形AQMK为菱形【解析】
(1)先判断出四边形CNPD为矩形,然后根据四边形ANCP为平行四边形得CN=AP,即可求出t值;(2)设点B到AC的距离d,利用勾股定理先求出AC,然后根据ΔABC面积不变求出点B到AC的距离;(3)由NP⊥AD,QP=PK,可得当PM=PA时有四边形AQMK为菱形,列出方程6-t-2t=8-(6-t),求解即可.【详解】解:(1)根据题意可得,BN=t∵在四边形ABCD中,AD∥BC,∠ADC=90°,NP⊥AD于点P,∴四边形CNPD为矩形,∴CN=DP=BC-BN=6-t∴AP=AD-DP=8-(6-t)=2+t∵四边形ANCP为平行四边形,CN=AP,∴6-t=2+t解得:t=2,∴当t=2时,四边形ANCP为平行四边形;(2)设点B到AC的距离d,在RtΔACD中,AC=C在ΔABC中,11∴d=∴点B到AC的距离18(3)存在.理由如下:∵将ΔAQM沿AD翻折得ΔAKM∵NP⊥AD ∴当PM=PA时有四边形AQMK为菱形,∴6-t-2t=8-(6-t),解得t=1,∴t=1,使四边形AQMK为菱形.【点睛】本题主要考查了四边形综合题,其中涉及到矩形的判定与性质,勾股定理,菱形的判定等知识,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.22、(1);(2).【解析】
(1)原式提取公因式,再利用平方差公式分解即可;
(2)原式提取公因式即可.【详解】解:(1)原式(2)原式【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法,正确运用公式是解本题的关键.23、.【解析】
根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 七年级语文下册 第二单元 比较 探究《游园不值》教学设计 北师大版
- 2024-2025学年高中物理 第二章 固体、液体和气体 第8节 气体实验定律(Ⅱ)教学设计 粤教版选修3-3
- 七年级地理下册 8.3 俄罗斯教学设计 (新版)湘教版
- 九年级化学下册 8.2 金属的化学性质教学设计 新人教版
- 七年级历史下册 第二单元 辽宋夏金元时期:民族关系发展和社会变化 第12课 宋元时期的都市和文化教学设计 新人教版
- 5《铺满金色巴掌的水泥道》教学设计-2024-2025学年语文三年级上册统编版
- 1《学习伴我成长》 第2课时 (教学设计)-2024-2025学年道德与法治三年级上册统编版
- Module 2(教学设计)-2023-2024学年外研版(一起)英语三年级下册
- 2 树之歌(教学设计)-2024-2025学年统编版语文二年级上册
- 2024-2025学年高中语文 第2单元 单元导读教学设计 新人教版必修1
- 海上施工安全培训
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 高中信息技术必修一4.3《运用选择结构描述问题求解过程》说课稿
- 大学生心理健康教育-诗韵节气探心灵知到智慧树章节测试课后答案2024年秋成都信息工程大学
- 动脉瘤病人的观察及护理
- 《计算机网络技术基础与实战(第二版)》课件 第5、6章 网络操作系统及基本应用;与世界相连
- 河南省汝州市实验中学2025届高考英语一模试卷含解析
- 地质勘查项目中的地质勘探野外工作安全规程考核试卷
- 烟叶质量评价体系-洞察分析
- 商业广场步行街改造合同
- 心力衰竭的饮食护理
评论
0/150
提交评论