2023届辽宁省大连市中考数学对点突破模拟试卷含解析_第1页
2023届辽宁省大连市中考数学对点突破模拟试卷含解析_第2页
2023届辽宁省大连市中考数学对点突破模拟试卷含解析_第3页
2023届辽宁省大连市中考数学对点突破模拟试卷含解析_第4页
2023届辽宁省大连市中考数学对点突破模拟试卷含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一元二次方程mx2+mx﹣=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.22.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<03.如图,有一些点组成形如四边形的图案,每条“边”(包括顶点)有n(n>1)个点.当n=2018时,这个图形总的点数S为()A.8064 B.8067 C.8068 D.80724.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于()A.25:24 B.16:15 C.5:4 D.4:35.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.106.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是(

)A. B. C. D.7.已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A. B.C. D.8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.DE=EB C.DE=DO D.DE=OB9.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是()A.0 B.1 C. D.10.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A. B. C. D.11.函数y=ax+b与y=bx+a的图象在同一坐标系内的大致位置是()A. B.C. D.12.的算术平方根是()A.4 B.±4 C.2 D.±2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在边长为1正方形ABCD中,点P是边AD上的动点,将△PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ.则当BQ+DQ的值最小时,tan∠ABP=_____.14.二次函数的图象如图,若一元二次方程有实数根,则的最大值为___15.如图,折叠长方形纸片ABCD,先折出对角线BD,再将AD折叠到BD上,得到折痕DE,点A的对应点是点F,若AB=8,BC=6,则AE的长为_____.16.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.17.如图,在平面直角坐标系中,点P的坐标为(0,4),直线y=x-3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为________.18.如图,在平面直角坐标系中,已知C(1,),△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则点F的坐标为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,3),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).20.(6分)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:销售单价(元)x销售量y(件)销售玩具获得利润w(元)(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?21.(6分)计算:﹣|﹣2|+()﹣1﹣2cos45°22.(8分)在中,,是的角平分线,交于点.(1)求的长;(2)求的长.23.(8分)如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-1,2),B(m,-1).(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.(10分)如图,已知抛物线经过原点o和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP=S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形.若能,请直接写出点M的运动时间t的值;若不能,请说明理由.25.(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.(1)求点D的坐标.(2)求点M的坐标(用含a的代数式表示).(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.26.(12分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?27.(12分)为了了解初一年级学生每学期参加综合实践活动的情况,某区教育行政部门随机抽样调查了部分初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了统计图①和图②,请根据图中提供的信息,回答下列问题:(I)本次随机抽样调查的学生人数为,图①中的m的值为;(II)求本次抽样调查获取的样本数据的众数、中位数和平均数;(III)若该区初一年级共有学生2500人,请估计该区初一年级这个学期参加综合实践活动的天数大于4天的学生人数.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m的值.【详解】∵一元二次方程mx1+mx﹣=0有两个相等实数根,∴△=m1﹣4m×(﹣)=m1+1m=0,解得:m=0或m=﹣1,经检验m=0不合题意,则m=﹣1.故选C.【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.2、B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象3、C【解析】分析:本题重点注意各个顶点同时在两条边上,计算点的个数时,不要把顶点重复计算了.详解:此题中要计算点的个数,可以类似周长的计算方法进行,但应注意各个顶点重复了一次.如当n=2时,共有S2=4×2﹣4=4;当n=3时,共有S3=4×3﹣4,…,依此类推,即Sn=4n﹣4,当n=2018时,S2018=4×2018﹣4=1.故选C.点睛:本题考查了图形的变化类问题,关键是通过归纳与总结,得到其中的规律.4、A【解析】

先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.【详解】∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∴∠HEF=90°,同理四边形EFGH的其它内角都是90°,∴四边形EFGH是矩形,∴EH=FG(矩形的对边相等),又∵∠1+∠4=90°,∠4+∠5=90°,∴∠1=∠5(等量代换),同理∠5=∠7=∠8,∴∠1=∠8,∴Rt△AHE≌Rt△CFG,∴AH=CF=FN,又∵HD=HN,∴AD=HF,在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,又∵HE•EF=HF•EM,∴EM=,又∵AE=EM=EB(折叠后A、B都落在M点上),∴AB=2EM=,∴AD:AB=5:==25:1.故选A【点睛】本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.5、D【解析】

根据有理数乘法法则计算.【详解】﹣2×(﹣5)=+(2×5)=10.故选D.【点睛】考查了有理数的乘法法则,(1)两数相乘,同号得正,异号得负,并把绝对值相乘;(2)任何数同0相乘,都得0;(3)几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;(4)几个数相乘,有一个因数为0时,积为0.6、D【解析】

根据锐角三角函数的定义,余弦是邻边比斜边,可得答案.【详解】cosα=.故选D.【点睛】熟悉掌握锐角三角函数的定义是关键.7、D【解析】

此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.【详解】解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.8、D【解析】

解:连接EO.∴∠B=∠OEB,∵∠OEB=∠D+∠DOE,∠AOB=3∠D,∴∠B+∠D=3∠D,∴∠D+∠DOE+∠D=3∠D,∴∠DOE=∠D,∴ED=EO=OB,故选D.9、C【解析】试题分析:本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.解:连接AB,如图所示:根据题意得:∠ACB=90°,由勾股定理得:AB==;故选C.考点:1.勾股定理;2.展开图折叠成几何体.10、A【解析】

对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.11、B【解析】

根据a、b的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a>0,b>0时,y=ax+b的图象经过第一、二、三象限,y=bx+a的图象经过第一、二、三象限,无选项符合;②当a>0,b<0时,y=ax+b的图象经过第一、三、四象限;y=bx+a的图象经过第一、二、四象限,B选项符合;③当a<0,b>0时,y=ax+b的图象经过第一、二、四象限;y=bx+a的图象经过第一、三、四象限,B选项符合;④当a<0,b<0时,y=ax+b的图象经过第二、三、四象限;y=bx+a的图象经过第二、三、四象限,无选项符合.故选B.【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.12、C【解析】

先求出的值,然后再利用算术平方根定义计算即可得到结果.【详解】=4,4的算术平方根是2,所以的算术平方根是2,故选C.【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣1【解析】

连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.解直角三角形得到AP=﹣1,根据三角函数的定义即可得到结论.【详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设AP=x,则PD=1﹣x,PQ=x.∵∠PDQ=45°,∴PD=PQ,即1﹣x=,∴x=﹣1,∴AP=﹣1,∴tan∠ABP==﹣1,故答案为:﹣1.【点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称﹣最短路线问题,正确的理解题意是解题的关键.14、3【解析】试题解析::∵抛物线的开口向上,顶点纵坐标为-3,∴a>1.-=-3,即b2=12a,∵一元二次方程ax2+bx+m=1有实数根,∴△=b2-4am≥1,即12a-4am≥1,即12-4m≥1,解得m≤3,∴m的最大值为3,15、3【解析】

先利用勾股定理求出BD,再求出DF、BF,设AE=EF=x.在Rt△BEF中,由EB2=EF2+BF2,列出方程即可解决问题.【详解】∵四边形ABCD是矩形,∴∠A=90°.∵AB=8,AD=6,∴BD1.∵△DEF是由△DEA翻折得到,∴DF=AD=6,BF=2.设AE=EF=x.在Rt△BEF中,∵EB2=EF2+BF2,∴(8﹣x)2=x2+22,解得:x=3,∴AE=3.故答案为:3.【点睛】本题考查了矩形的性质、勾股定理等知识,解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.16、3【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质17、【解析】

认真审题,根据垂线段最短得出PM⊥AB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用△PBM∽△ABO,即可求出本题的答案【详解】解:如图,过点P作PM⊥AB,则:∠PMB=90°,当PM⊥AB时,PM最短,因为直线y=x﹣3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,﹣3),在Rt△AOB中,AO=4,BO=3,AB=,∵∠BMP=∠AOB=90°,∠B=∠B,PB=OP+OB=7,∴△PBM∽△ABO,∴,即:,所以可得:PM=.18、(,)【解析】

根据相似三角形的性质求出相似比,根据位似变换的性质计算即可.【详解】解:∵△ABC与△DEF位似,原点O是位似中心,要使△DEF的面积是△ABC面积的5倍,则△DEF的边长是△ABC边长的倍,∴点F的坐标为(1×,×),即(,),故答案为:(,).【点睛】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)D(0,);(1)C(11﹣6,11﹣18);(3)B'(1+,0),(1﹣,0).【解析】

(1)设OD为x,则BD=AD=3,在RT△ODA中应用勾股定理即可求解;(1)由题意易证△BDC∽△BOA,再利用A、B坐标及BD=AC可求解出BD长度,再由特殊角的三角函数即可求解;(3)过点C作CE⊥AO于E,由A、B坐标及C的横坐标为1,利用相似可求解出BC、CE、OC等长度;分点B’在A点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C,再利用特殊角的三角函数可逐一求解.【详解】(Ⅰ)设OD为x,∵点A(3,0),点B(0,),∴AO=3,BO=∴AB=6∵折叠∴BD=DA在Rt△ADO中,OA1+OD1=DA1.∴9+OD1=(﹣OD)1.∴OD=∴D(0,)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴且BD=AC,∴∴BD=﹣18∴OD=﹣(﹣18)=18﹣∵tan∠ABO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=,∴CD=11﹣6∴D(11﹣6,11﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,CE=∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A点右边,∵折叠∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=1+∴B'(1+,0)若点B'落在A点左边,∵折叠∴BC=B'C=4,CE=,CE⊥OA∴B'E=∴OB'=﹣1∴B'(1﹣,0)综上所述:B'(1+,0),(1﹣,0)【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键.20、(1)1000﹣x,﹣10x2+1300x﹣1;(2)50元或80元;(3)8640元.【解析】

(1)由销售单价每涨1元,就会少售出10件玩具得销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.(2)令﹣10x2+1300x﹣1=10000,求出x的值即可;(3)首先求出x的取值范围,然后把w=﹣10x2+1300x﹣1转化成y=﹣10(x﹣65)2+12250,结合x的取值范围,求出最大利润.【详解】解:(1)销售量y=600﹣(x﹣40)x=1000﹣x,销售利润w=(1000﹣x)(x﹣30)=﹣10x2+1300x﹣1.故答案为:1000﹣x,﹣10x2+1300x﹣1.(2)﹣10x2+1300x﹣1=10000解之得:x1=50,x2=80答:玩具销售单价为50元或80元时,可获得10000元销售利润.(3)根据题意得,解得:44≤x≤46.w=﹣10x2+1300x﹣1=﹣10(x﹣65)2+12250∵a=﹣10<0,对称轴x=65,∴当44≤x≤46时,y随x增大而增大.∴当x=46时,W最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元.21、+1【解析】分析:直接利用二次根式的性质、负指数幂的性质和特殊角的三角函数值分别化简求出答案.详解:原式=2﹣2+3﹣2×=2+1﹣=+1.点睛:本题主要考查了实数运算,正确化简各数是解题的关键.22、(1)10;(2)的长为【解析】

(1)利用勾股定理求解;(2)过点作于,利用角平分线的性质得到CD=DE,然后根据HL定理证明,设,根据勾股定理列方程求解.【详解】解:(1)在中,;(2)过点作于,平分,在和中,.设,则在中,解得即的长为【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,全等三角形的判定与性质,难点在于(2)多次利用勾股定理.23、(1)反比例函数的解析式为;一次函数的解析式为y=-x+1;(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【解析】

(1)将A点代入求出k2,从而求出反比例函数方程,再联立将B点代入即可求出一次函数方程.(2)令PA=PB,求出P.令AP=AB,求P.令BP=BA,求P.根据坐标距离公式计算即可.【详解】(1)把A(-1,2)代入,得到k2=-2,∴反比例函数的解析式为.∵B(m,-1)在上,∴m=2,由题意,解得:,∴一次函数的解析式为y=-x+1.(2)满足条件的P点的坐标为(-1+,0)或(-1-,0)或(2+,0)或(2-,0)或(0,0).【点睛】本题考查一次函数图像与性质和反比例函数的图像和性质,解题的关键是待定系数法,分三种情况讨论.24、(1);(2)(,1)(,1);(3)存在,,,,【解析】试题分析:(1)将x=-2代入y=-2x-1即可求得点B的坐标,根据抛物线过点A、O、B即可求出抛物线的方程.(2)根据题意,可知△ADP和△ADC的高相等,即点P纵坐标的绝对值为1,所以点P的纵坐标为,分别代入中求解,即可得到所有符合题意的点P的坐标.(3)由抛物线的解析式为,得顶点E(2,﹣1),对称轴为x=2;点F是直线y=﹣2x﹣1与对称轴x=2的交点,求出F(2,﹣1),DF=1.又由A(4,0),根据勾股定理得.然后分4种情况求解.点睛:(1)首先求出点B的坐标和m的值,然后利用待定系数法求出抛物线的解析式;(2)△ADP与△ADC有共同的底边AD,因为面积相等,所以AD边上的高相等,即为1;从而得到点P的纵坐标为1,再利用抛物线的解析式求出点P的纵坐标;(3)如解答图所示,在点M的运动过程中,依次出现四个菱形,注意不要漏解.针对每一个菱形,分别进行计算,求出线段MF的长度,从而得到运动时间t的值.25、(1)D(2,2);(2);(3)【解析】

(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.【详解】(1)当x=0时,,∴A点的坐标为(0,2)∵∴顶点B的坐标为:(1,2-a),对称轴为x=1,∵点A与点D关于对称轴对称∴D点的坐标为:(2,2)(2)设直线BD的解析式为:y=kx+b把B(1,2-a)D(2,2)代入得:,解得:∴直线BD的解析式为:y=ax+2-2a当y=0时,ax+2-2a=0,解得:x=∴M点的坐标为:(3)由D(2,2)可得:直线OD解析式为:y=x设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:解得:∴直线AB的解析式为y=-ax+2联立成方程组:,解得:∴N点的坐标为:()ON=()过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.∵OA=2∴OE=A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论