活性污泥污水处理工艺中泡沫的形成与控制_第1页
活性污泥污水处理工艺中泡沫的形成与控制_第2页
活性污泥污水处理工艺中泡沫的形成与控制_第3页
活性污泥污水处理工艺中泡沫的形成与控制_第4页
活性污泥污水处理工艺中泡沫的形成与控制_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

活性污泥污水处理工艺中泡沫的形成与控制研究

摘要:活性污泥曝气池中严重的泡沫现象是一种常见问题,主要是由于Nocardioformactinomycetes和Microthrixparvicella菌属的异样生长造成的。微生物细胞表面的疏水性(CSH)、污泥停留时间(SRT)、pH值、溶解氧(DO)等是丝状菌生长的重要因素。控制泡沫的方法主要有喷洒水、投加化学药剂、降低细胞平均停留时间、调节污水pH值、增设生物选择器、采用连续填料反应器等。

关键字:活性污泥工艺泡沫Nocardioformactinomycetes;Microthrixparvicella形成和控制0引言目前,世界范围内大多数城市污水处理厂采用活性污泥法处理工艺。普遍存在的问题之一就是曝气池表面常常会产生严重的泡沫,大量的泡沫使曝气池表面被覆盖,若从池中溢出会引起外部设备及外部池壁的污染,严重影响了周围的环境,给污水处理厂的运行和管理带来了困难,同时也使出水水质恶化。根据对国内外污水处理厂的调查,大多数都不同程度地受到泡沫问题的影响,特别是采用延时曝气工艺的污水厂更是如此。1泡沫的形成活性污泥工艺中,泡沫的形成一般有以下几种形式,主要包括工艺运行初始时期形成泡沫、反硝化作用起泡、表面活性剂起泡以及生物泡沫等[1]。生物泡沫粘度大,呈黄褐色,具有稳定、持续、较难控制的特点。1.1工艺运行初期形成泡沫曝气池开始运转时,特定表面活性剂对有机物的部分降解作用形成泡沫,并使泡沫迅速增长。这些泡沫一般呈白色且质轻,当活性污泥达到成熟时消失。1.2反硝化作用起泡由于在二沉池或曝气不足的地方会发生反硝化作用,使微小的氮气气泡释放出来,从而使污泥的密度减小,有利于其上浮,产生泡沫现象。这种现象在二次沉淀池中表现明显,且产生的悬浮泡沫通常不稳定。1.3表面活性剂起泡污水中的表面活性剂和淀粉、蛋白质、油脂等表面活性物质在分子结构上都表现为含有极性-非极性基团即所谓双亲分子,在曝气的条件下,非极性基团一端伸入气泡内,而极性基团选择地被亲水物质所吸附,这样亲水性物质的表面被转化成疏水性物质而粘附在气泡水膜上,随气泡一起上浮至水面。各种悬浮物质若混入表面活性剂等产生的泡中,这些物质单独存在并不能发泡,但是可使泡沫稳定。如造纸工业中的微细纸浆,食品工业中的纤维质等。另外,如氯化钠、硫酸钠、硫酸铝等盐类的水溶液,单独存在几乎不产生泡沫,但也有助于泡沫的稳定,使泡沫难以消失,如图1、2、3所示[2]。图1纯水中的气泡图2水中混入表面图3水中混入表面活性剂活性剂的气泡

和悬浮物质的气泡

Figure1.Afoamin

Figure2.AfoaminwaterwithFigure3.Afoaminwaterwithsurfacepurewatersurfaceactiveagentsactiveagentsandsuspendedsubstances1.4生物泡沫目前,普遍认为生物泡沫形成的主要原因是:在各种因素影响下,造成丝状菌和放线菌等微生物的异样生长,丝状菌的比生长速率高于了菌胶团细菌,又由于丝状菌的比表面积较大,因此,丝状菌在取得污水中BOD5物质和氧化BOD5物质所需要的氧气方面都比菌胶团细菌有利得多,结果曝气池中丝状菌成为优势菌种而大量增值,导致生物泡沫的产生。再加上这些微生物大都呈丝状或枝状,易形成网,能捕扫微粒和气泡等,并浮到水面。被丝网包围的气泡,增加了其表面的张力,使气泡不易破碎,泡沫更加稳定。另外,曝气气泡产生的气浮作用是泡沫形成的主要动力因素。研究发现,与生物泡沫有关的菌属主要有Nocardioformactinomycetes(放线菌)和Microthrixparvicella(丝状菌)等,如图4所示,前者多出现于夏季,后者多出现于冬季[3]。LindaL.Blackall等通过测定Microthrixparvicella等丝状菌的16SrDNA序列,对引起生物泡沫的主要丝状菌进行了分离鉴定和分类[4],如表1所示。Microthrixparvicella是生成生物泡沫的最重要菌种,其16SrDNA序列信息证实Microthrixparvicell也是一种放线菌,通过电子显微镜观察,其细胞壁上有革兰氏阳性细菌所具有的典型表面,呈单一均质层;EikelboomType0092、EikelboomType0411和EikelboomType1863丝状菌革兰氏染色均呈阴性,16SrDNA序列信息表明三者都属于Flexibacter-Cytophaga-Bacteroides;EikelboomType0803是一种类Proteobacteria,WilliamsandUnz认为根据形态学准则很难区别Microthrixparvicell和EikelboomType0803,但序列信息表明事实上二者没有任何关系,EikelboomType0803与上述各丝状菌都不太相似。D.B.Oerther等利用低(聚)核苷酸探测技术、杂交培植和抗体着色等方法,对生物泡沫中Gordoniaspp.等丝状微生物进行了定量分析。结果表明,Gordoniaspp.等菌体的活性和数量水平的增加与整体微生物群落的活性及数量水平有关,在形成生物泡沫过程中,Gordoniaspp.等丝状微生物自身的物理性质可能比细胞的代谢活性所起的作用要大[5]。图4Nocardiaamarae和Microthrixparvicella[6]Figure4.NocardiaamaraeandMicrothrixparvicella[6]研究表明,丝状菌等微生物细胞表面的疏水性或憎水性(cellsurfacehydrophobicity,CSH)是形成生物泡沫并使之稳定的重要原因。HelenStratton(1998)等从生物泡沫中分离出nocardiform及Rhodococcusrhodochrous等菌种,对细胞表面霉菌酸成分(mycolicacidcontent),表1与泡沫形成有关的主要菌属Table1.Mainbacteriainvolvedinfoamsforming序号菌种名称革兰氏性种属和形态1NocardiiaamaaraeG+放线菌(actiinomyccete),枝状菌丝丝2NocardiiapinnesisG+放线菌,松枝状3Rhodocooccussp.G+放线菌,枝状菌丝丝4MicrothhrixpparviccellaG+丝状菌(filaament)),无鞘无分分枝,丝状5EikelbooomTyype00992G-F-C-B门,丝丝状菌6EikelbooomTyype04111G-F-C-B门,丝丝状菌7EikelbooomTyype18663G-F-C-B门,,类Proteeobactteria,,丝状菌8EikelbooomTyype08003G-F-C-B门,,类Proteeobactteria,,丝状菌注:F-C-B门表示Flexibacter-Cytophaga-Bacteroidesphylum.以及细胞表面疏水性(CSH)与形成稳定生物泡沫能力之间的关系进行了研究,结果表明:霉酸菌成分并不是形成CSH的唯一原因,CSH也不是生成生物泡沫并使之稳定的唯一因素。CSH随着微生物的培养周期,以及其它条件,如生长温度、碳源等的变化而改变;Rhodococcusrhodochrous中霉酸菌成分也会随着培养周期、温度以及碳源等条件的变化而发生改变;nocardiform细胞表面的霉酸菌成分对其CSH的影响不大[7]。D.Mamais(1998)等认为,长链脂肪酸(慢速生物降解COD)和低温环境是脱氮活性污泥系统中Microthrixparvicella生长的主要原因,絮凝体形成菌去除易生物降解COD的过程也不会影响Microthrixparvicella的生长,长链脂肪酸被去除的量(吸附去除)与Microthrixparvicella的生长量成反比关系[8];污泥停留时间(SRT)、pH值也会影响生物泡沫的产生。长污泥停留时间有利于Microthrixparvicella等丝状菌微生物的生长,这也是延时曝气工艺更容易引起生物泡沫的原因。另外,溶解氧(DO)以及曝气方式等也是生成泡沫的重要影响因素。如表2所示。表2与优势丝状菌相关的条件[9]Table2.Conditionsbeingrelatedtopredominantfilamentousbacteria产生条件丝状菌种类低DOMicrothhrixpparviccella,,S.NNatanss,17001低F/MMicrothhrixpparviccella,,0041,,0092完全混合式生物反反应器H.Hydrrossiss,Noccardiaaspp..,0211N,18851,17701腐败性废水/硫硫化物Beggiattoa,TThiothhrixsspp.,0914营养不足S.Nataans,TThiothhrixsspp.,021N;;可能有H.Hyydrosssis,00041低pH值fungalbacteeria2泡沫的控制根据泡沫形成的机理及其影响因素,可采用物理化学和生物的方法对泡沫进行控制。控制泡沫特别是生物泡沫的实质并非消除Microthrixparvicella等细菌的产生,主要途径就是在曝气系统中建立一个不适宜丝状菌异常生长的环境,抑制其在活性污泥中的过度增殖,使丝状菌与絮凝体形成菌保持平衡的比例生长。2.1物化方法控制泡沫①喷洒水喷洒的水流或水珠能打碎浮在水面的气泡,以减少泡沫。但不能根本消除泡沫现象,是一种最常用最简便的物理方法。②投加化学药剂阳离子聚丙烯酰胺(acrylamidebasedcationicpolymer)是一种常用的消泡剂,工程实例中,把阳离子聚丙烯酰胺投加于二沉池进水管中,其既有抑制Nocardioformactinomycetes生长的作用,又有通过回流污泥进入曝气池消除污水中表面活性剂及表面活性物质极性-非极性特点的作用。由于上述两点的存在,新的稳定泡沫难于大量生成,而在水面上的泡沫层由于水面紊动,泡沫受剪力作用不断破碎,表面泡沫水膜由于水分不断蒸发,泡沫不断破碎,泡沫层也逐渐消失[10]。低浓度的H2O2也是一种较常用的泡沫消除剂,在活性污泥中投加当投加低浓度H2O2时,其浓度不足以杀死菌胶团表面伸出的丝状菌,只能氧化部分生物残渣和消除代谢过程产生的毒素,净化菌胶团细菌生长的环境,促进了菌胶团细菌优势生长,使菌胶团菌和丝状菌的生长达到了新的平衡,从而达到控制生物泡沫的目的,而出水水质并未恶化。H2O2应投加于回流污泥中,投加浓度为20~25mgH2O2/(kg·MLSS)[11]。YongwooHwang等通过污水厂观察、实验室试验以及现场应用,发现污水中的泡沫是典型的季节性出现的,代谢和动力学的调节并不能很成功的抑制Microthrixparvicella的过度生长和泡沫的产生,经过与氯、阳离子聚丙烯酰胺两种化学药剂相比较,发现除丝状菌聚季铵碱(quaternaryammoniumbasedantifilamentpolymer,AFP)是一种最有效的物理化学方法来抑制Microthrixparvicella的过度增殖,能有效的控制泡沫,并未给出水水质带来变化[12]。另外,如氯、臭氧、聚乙二醇以及氯化铁和铜材酸洗液的混合药剂等均具有较强的氧化性,也可当作消泡剂使用。2.2生物方法控制泡沫①降低细胞平均停留时间降低细胞平均停留时间是很有效的控制泡沫的方法,实质即利用丝状菌平均世代时间较长于絮凝体形成菌的特点,抑制丝状菌的过度增殖,细胞平均停留时间越短,丝状菌越少,泡沫也越少。②调节污水pH值研究表明,最适宜Nocardiaamarae生长的pH值为7.8,最适宜Microthrixparvicella生长的pH值为7.7~8.0,当pH值从7.0降为5.0~5.6时,能有效控制这些微生物的过度生长,减少泡沫的形成[13]。③降低曝气的空气输入率降低了曝气的空气输入率,一是能降低曝气池中气提强度,减缓了丝状菌的上浮速度;二是能降低曝气池中的溶解氧浓度,Nocardiaamarae是严格的好氧菌,在缺氧或厌氧条件下,不易生长,但Microthrixparvicella却能忍受缺氧状态。再者,降低曝气池的空气输入量也相应的降低了微气泡的生成量,即减少丝状菌和放线菌机体上浮的载体,从而延缓泡沫的形成。④回流厌氧消化池上清液试验表明,厌氧消化池上清液能抑制Rhodococcusrhodochrous菌属的生长,采用厌氧消化池上清液回流到曝气池的方法,也能控制曝气池表面泡沫的形成。但由于厌氧消化池上清液中含有高浓度好氧底物和氨氮,它们都会影响出水水质,因此应慎用。⑤增设生物选择器

生物选择器有好氧选择器和缺氧选择器两种,其目的就是使进入曝气池的污水先于回流污泥在其中充分混合,通过调节F/M、DO等因素,选择性的发展絮凝体形成菌,抑制丝状菌等的过度增殖。在设计选择器时,选择器需要分格设置,一般多采用4~6格;尽量提高选择器第一格的F/M值,形成F/M梯度;还要控制选择器的水力停留时间,一般为10~15分钟。另有研究表明:好氧选择器能一定程度地控制Microthrixparvicella,但对Nocardia菌属无大影响;而缺氧选择器对Nocardia菌属有控制作用,却对Microthrixparvicella无太大作用[14]。⑥采用连续填料反应器D.Mamais(1998)等也认为,没有证据表明厌氧和缺氧选择器能够绝对成功的控制Microthrixparvicella的扩散和增殖,连续流和序批实验表明,控制Microthrixparvicella生长的最佳方式就是采用连续填料流反应器,理由有二:一是利用絮凝体形成菌的高吸附能力能够大量去除慢速生物降解COD;二是能避免胶体物质水解后可溶产物的扩散[8]。3现场实例北京首都机场污水处理厂采用合建式缺氧―好氧活性污泥工艺(A/O)。污水厂的污水主要来源于航空工作区、生活区、宾馆以及周边生活小区,处理能力为20000m3/d,其工艺流程如图3所示。2004年2月14日至2月17日期间,曝气池表面出现了严重的泡沫,开始采取了向曝气池表面喷洒清水的措施,但消泡效果不理想。2月18日,采取了降低曝气的空气输入强度的措施,并向二沉池的进水管中投加了约25L(0.5mg/L)的阳离子聚丙烯酰胺溶液,连续投加7天,每天观察并记录了泡沫覆盖曝气池的百分率,如图4所示。开始投加时泡沫覆盖率已经达到90%左右,2月20日泡沫覆盖率下降至70%,到2月24日覆盖率下降至12%,随后稳定在10%以下。图4曝气池泡沫覆盖率随投加阳离子聚丙烯酰胺的时间变化关系Figure4.Variationrelationshipbetweenbestrewingrateoffoamsinaerationpooland

addingtimeofacrylamidebasedcationicpolymer4结语活性污泥工艺中泡沫产生的条件和机理尚有争议,但目前的研究认为,主要是由于Nocardia和Microthrixparvicella菌属的异样生长,其比生长速率高于菌胶团絮凝体形成菌的比生长速率造成的,Nocardia和Microthrixparvicella菌属有疏水性极强的细胞表面,迁移并停留在气泡表面,因而使气泡稳定。发泡现象也与气–水界面的疏水性有机化合物的浓度有关。泡沫的控制主要有物化和生化的方法,通过加入化学药剂来改变细菌细胞表面的化学性质仍是一种控制泡沫产生的常用方法,而广泛应用的杀菌剂普遍存在负作用,因为过量或投加位置不当,会大量降低反应池中絮凝体形成菌的数量及生物总量。总之,目前常用的投加化学药剂方法只是一种应急措施而非根本解决途径,因此,还应通过更深入更实际的生物方法的研究,来寻找一种更合理有效、更经济适用的方法控制Nocardia和Microthrixparvicella菌属的生长和泡沫的形成,保证活性污泥工艺的正常和高效运行。参考文献[1]WarrerJ.Activatedsludgebulkingandfoamingcontrol[M].TechnomicpublishingCo.Inc.Lancaster,1994.[2]楚广诣,等.浅谈污水处理中的泡沫问题[J].山东环境,1998,4:29.[3]P.Madoni,etal.Testingthecontroloffilamentousmicroorganismsresponsibleforfoaminginafull-scaleactivatedsludgeplantrunningwithinitialaerobicoranoxiccontactzones[J].BioresourceTechnology,1997,60:43-49.[4]LindaL.Blackall,etal.Towardsunderstandingthetaxonomyofsomeofthefilamentousbacteriacausingbulkingandfoaminginactivatedsludgeplants[J].Wat.Sci.Tech,1996,34(5-6):137-144.[5]D.B.Oerther,etal.Quantifyingfilamentousmicroorganismsinactivatedsludgebefore,during,andafteranincidentoffoamingbyoligonucleotideprobehybridizationsandantibodystaining[J].Wat.Res,2001,35(14):3325-3336.[6]Soddell.J.A,etal.Microbiologyoffoaminginactivatedsludgeplants[J].J.App.Bacteriol,1990,69:145-176.[7]HelenStration,etal.Activatedsludgefo

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论