下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省惠州市光明中学2021-2022学年高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知复数z=1+i,则=()A.2 B.﹣2 C.2i D.﹣2i参考答案:B【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:∵复数z=1+i,∴==﹣=﹣2,故选:B.2.个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有(
)A.
B.
C.
D.参考答案:B略3.已知x、y的取值如下表所示,若y与x线性相关,且,则=____x0134y2.24.34.86.7
参考答案:2.64.已知x,y的取值如下表所示,若y与x线性相关,且
X01342.24.34.86.7A.2.2
B.2.6 C.2.8
D.2.9参考答案:B略5.函数的单调减区间为
A.
B.
C.
D.
(0,2)
参考答案:D略6.已知向量,且,那么实数等于(
)A.3
B.
C.9
D.参考答案:D略7.已知关于面的对称点为,而关于轴的对称点为,则()A. B. C. D.参考答案:C8.对两个变量y和x进行回归分析,得到一组样本数据:(x1,y1),(x2,y2),…,(xn,yn),则下列说法中不正确的是()
A.由样本数据得到的回归方程=x+必过样本点的中心(,)
B.残差平方和越小的模型,拟合的效果越好
C.用相关指数R2来刻画回归效果,R2的值越小,说明模型的拟合效果越好
D.在残差图中,残差点比较均匀地落在水平带状区域中,说明选用的模型比较合适,带状区域越窄,说明回归方程的预报精确度越高;参考答案:C9.已知椭圆E:+=1(a>b>0)的右焦点为F(3,0),过点F的直线交椭圆于A.B两点.若AB的中点坐标为(1,﹣),则E的方程为()A.+y2=1 B.+=1C.+=1 D.+=1参考答案:A【考点】椭圆的简单性质.【分析】设A点坐标的(x1,y1),B点坐标为(x2,y2),可得=1,=1,两式相减得,+=0,再利用中点坐标公式、斜率计算公式即可得出.【解答】解:设A点坐标的(x1,y1),B点坐标为(x2,y2),∴=1,=1,两式相减得,+=0,∵x1+x2=2,y1+y2=,k===.∴=,又∵c2=a2﹣b2=10b2﹣b2=9b2,c2=9,∴b2=1,a2=10,即标准方程为=1.故选:A10.在△ABC中,a=15,b=10,A=60°,则cosB=()A.-
B.C.-
D.参考答案:D略二、填空题:本大题共7小题,每小题4分,共28分11.函数的定义域为A,若,则实数的取值范围是
参考答案:略12.观察下列的图形中小正方形的个数,则第n个图中有个小正方形.参考答案:考点:归纳推理.
专题:规律型.分析:由题意可得,f(1)=2+1,f(2)=3+2+1,f(3)=4+3+2+1,f(4)=5+4+3+2+1,f(5)=6+5+4+3+2+1,从而可得f(n),结合等差数列的求和公式可得.解答:解:由题意可得,f(1)=2+1f(2)=3+2+1f(3)=4+3+2+1f(4)=5+4+3+2+1f(5)=6+5+4+3+2+1…f(n)=(n+1)+n+(n﹣1)+…+1=.故答案为:.点评:本题主要考查了等差数列的求和公式在实际问题中的应用,解题的关键是要根据前几个图形的规律归纳出f(n)的代数式,考查了归纳推理的能力.13.已知是不同的直线,是不重合的平面,给出下列命题:①若∥,,则∥②若,∥,∥,则∥③若∥,则∥④是两条异面直线,若∥,∥,∥,∥,则∥上面命题中,真命题的序号是
(写出所有真命题的序号).参考答案:③④略14.若抛物线y2=4x上一点M到焦点F的距离为5,则点M的横坐标为
.参考答案:4【考点】抛物线的简单性质.【分析】求出抛物线的准线方程,利用抛物线的定义,求解即可.【解答】解:抛物线y2=4x的准线方程为x=﹣1,∵抛物线y2=4x上点到焦点的距离等于5,∴根据抛物线点到焦点的距离等于点到准线的距离,∴可得所求点的横坐标为4.故答案为:4【点评】本题给出抛物线上一点到焦点的距离,要求该点的横坐标,着重考查了抛物线的标准方程与简单性质,属于基础题.15.将101101(2)化为十进制结果为
;再将该数化为八进制数,结果为
.参考答案:45,55(8)16.若函数在其定义域的一个子区间上不是单调函数,则实数的取值范围_______参考答案:略17.设F1,F2是双曲线C:(a>0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2的最小内角为30°,则C的离心率为.参考答案:【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】利用双曲线的定义求出|PF1|,|F1F2|,|PF2|,然后利用最小内角为30°结合余弦定理,求出双曲线的离心率.【解答】解:因为F1、F2是双曲线的两个焦点,P是双曲线上一点,且满足|PF1|+|PF2|=6a,不妨设P是双曲线右支上的一点,由双曲线的定义可知|PF1|﹣|PF2|=2a所以|F1F2|=2c,|PF1|=4a,|PF2|=2a,∵△PF1F2的最小内角∠PF1F2=30°,由余弦定理,∴|PF2|2=|F1F2|2+|PF1|2﹣2|F1F2||PF1|cos∠PF1F2,即4a2=4c2+16a2﹣2×2c×4a×,∴c2﹣2ca+3a2=0,∴c=a所以e==.故答案为:.【点评】本题考查双曲线的定义,双曲线的离心率的求法,考查计算能力.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知,,与的夹角为,求(1)在方向上的投影;(2)与的夹角为锐角,求的取值范围。参考答案:【知识点】向量的投影,向量的夹角【答案解析】解析:解:(1)在方向上的投影为=;(2)若与的夹角为锐角,则且两向量不共线,得且,得.【思路点拨】在求一个向量在另一个向量上的投影时,可直接利用定义进行计算,判断两个向量的夹角为锐角或钝角时,可直接利用数量积的符号进行解答,注意要排除两向量共线的情况.19.(本小题满分10分)学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生。(I)求这3名学生选择的选修课互不相同的概率;(II)求恰有2门选修课没有被这3名学生选择的概率;
(III)求投资理财选修课被这3名学生选择的人数的数学期望。参考答案:解:(Ⅰ)3名学生选择了3门不同的选修课的概率为
----------2分(Ⅱ)恰有2门选修课这3名学生都没选择的概率为-----------5分(Ⅲ)设投资理财选修课被这3名学生选择的人数为,则=0,1,2,3
-----------6分P(=0)=P(=1)=P(=2)=P(=3)=0123P的分布列是
20.已知三角形ABC的顶点坐标为A(﹣1,5)、B(﹣2,﹣1)、C(4,3),M是BC边上的中点.(1)求AB边所在的直线方程;(2)求中线AM的长.参考答案:【考点】直线的一般式方程;中点坐标公式.【专题】计算题.【分析】(1)已知A(﹣1,5)、B(﹣2,﹣1),根据两点式写直线的方法化简得到AB所在的直线方程;(2)根据中点坐标公式求出M的坐标,然后利用两点间的距离公式求出AM即可.【解答】解:(1)由两点式写方程得,即6x﹣y+11=0或直线AB的斜率为直线AB的方程为y﹣5=6(x+1)即6x﹣y+11=0(2)设M的坐标为(x0,y0),则由中点坐标公式得故M(1,1)【点评】考查学生会根据条件写出直线的一般式方程,以及会利用中点坐标公式求线段中点坐标,会用两点间的距离公式求两点间的距离.21.在平面直角坐标系中,点P到两点,的距离之和等于4,设点P的轨迹为.(Ⅰ)写出C的方程;(Ⅱ)设直线与C交于A,B两点.k为何值时?此时的值是多少?参考答案:解:(Ⅰ)设P(x,y),由椭圆定义可知,点P的轨迹C是以为焦点,长半轴为2的椭圆.它的短半轴,故曲线C的方程为.………………4分(Ⅱ)设,其坐标满足消去y并整理得,
显然△>0故.…………6分,即.
而,于是.所以时,,故.…………8分当时,,.,而,所以.
………12分22.已知圆C经过A(3,2)、B(1,6),且圆心在直线y=2x上.(Ⅰ)求圆C的方程.(Ⅱ)若直线l经过点P(﹣1,3)与圆C相切,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【分析】(Ⅰ)根据已知设出圆的标准方程,将点A,B的坐标代入标准方程,解方程组即可求出圆心及半径,从而得到圆C的方程.(Ⅱ)根据已知设出直线方程,利用直线与圆相切的性质d=r即可求出直线斜率k,从而求出直线方程.【解答】解:(Ⅰ)∵圆心在直线y=2x上,故可设圆心C(a,2a),半径为r.则圆C的标准方程为(x﹣a)2+(y﹣2a)2=r2.∵圆C经过A(3,2)、B(1,6),∴.解得a=2,r=.∴圆C的标准方程为(x﹣2)2+(y﹣4)2=5.(Ⅱ)由(Ⅰ)知,圆C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权购买合同:影视作品版权购买与授权
- 2024年度成建制劳务分包商的违约责任合同
- 2024年度不锈钢栏杆工程承包合同
- 2024年度农业企业社会责任履行与评估合同
- 2024年度智能制造生产线购销合同
- 比基尼泳装市场发展现状调查及供需格局分析预测报告
- 2024年度城中村改造拆除合同
- 2024年度企业并购重组顾问合同(标的:亿元并购咨询服务)
- 2024年度人力资源服务合同标的为人才招聘外包
- 2024年度版权许可合同:音乐作品《梦回2024》的线上线下播放权许可
- 人力资源尽职调查报告
- 智慧食堂综合解决方案课件【2022版】
- 人人讲安全、个个会应急-畅通生命通道2024安全生产月专题课件
- 职业性传染病:警察如何保持健康
- 未来趋势与职业前景智慧树知到期末考试答案章节答案2024年联盟推+荐
- 班级建设方案国赛一等奖
- 钢结构安装临时支撑专项方案
- 肥胖患者麻醉管理专家共识2023年版中国麻醉学指南与专家共识
- 中考物理总复习《力学的综合计算》专项检测卷(带答案)
- 数学与思政融合课教学设计
- 大面积脑梗死护理措施
评论
0/150
提交评论