下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省广州市骏景中学高二数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如果一个几何体的三视图如图所示(长度单位:cm),则此几何体的表面积是(
)A.
B.
C.
D.参考答案:A2.下列函数是偶函数且在(0,+∞)上是增函数的是()A. B. C.y=lnx D.y=﹣x2+1参考答案:A【考点】3N:奇偶性与单调性的综合.【分析】根据幂函数的性质、指数函数、对数函数的性质以及二次函数的性质可得函数的单调性和奇偶性.【解答】解:选项A,是偶函数,指数大于0,则在(0,+∞)上是增函数,故正确;选项B,的底数小于1,故在(0,+∞)上是减函数,故不正确;选项C,y=lnx的定义域不对称,故是非奇非偶函数,故不正确;选项D,y=﹣x2+1是偶数函数,但在(0,+∞)上是减函数,故不正确;故选A.【点评】本题主要考查了常见函数单调性和奇偶性的综合,考查的都是基本函数,属于基础题.3.若集合,则集合A∩B的元素个数为(
)A.0
B.2 C.5
D.8参考答案:B4.已知等比数列{an}满足a1=,a3a5=4(a4﹣1),则a2=()A.2 B.1 C. D.参考答案:C【考点】等比数列的通项公式.【分析】利用等比数列的通项公式即可得出.【解答】解:设等比数列{an}的公比为q,∵,a3a5=4(a4﹣1),∴=4,化为q3=8,解得q=2则a2==.故选:C.5.若函数,则(其中为自然对数的底数)(
)A.
B.
C.
D.参考答案:C略6.四面体ABCD中,设M是CD的中点,则化简的结果是
A.
B.
C.
D.
参考答案:A略7.为得到函数y=sin(x+)的图象,可将函数y=sinx的图象向左平移m个单位长度,或向右平移n个单位长度(m,n均为正数),则|m﹣n|的最小值是()A. B.C.D.参考答案:B【考点】函数y=Asin(ωx+φ)的图象变换.【分析】依题意得m=2k1π+,n=2k2π+(k1、k2∈N),于是有|m﹣n|=|2(k1﹣k2)π﹣|,从而可求得|m﹣n|的最小值.【解答】解:由条件可得m=2k1π+,n=2k2π+(k1、k2∈N),则|m﹣n|=|2(k1﹣k2)π﹣|,易知(k1﹣k2)=1时,|m﹣n|min=.故选:B.8.设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为(
)A
B
C
D参考答案:C略9.某产品的广告费用与销售额的统计数据如下表:广告费用(万元)42
3
5销售额(万元)
49
26
39
54
根据以上表可得回归方程中的为据此模型预报广告费用为万元时销售额为(
)A.63.6万元
B.
65.5万元
C.67.7万元
D.72.0万元参考答案:B10.已知,则下列正确的是
A.奇函数,在R上为增函数
B.偶函数,在R上为增函数
C.奇函数,在R上为减函数
D.偶函数,在R上为减函数参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知定义域为R的函数的导函数为,且,,则不等式的解集为_____.参考答案:(-∞,1)12.抛物线的焦点坐标为___
______
参考答案:13.若“?x∈,tanx≤m”是真命题,则实数m的最小值为
.参考答案:1【考点】命题的真假判断与应用.【专题】函数的性质及应用;三角函数的图像与性质.【分析】求出正切函数的最大值,即可得到m的范围.【解答】解:“?x∈,tanx≤m”是真命题,可得tanx≤1,所以,m≥1,实数m的最小值为:1.故答案为:1.【点评】本题考查函数的最值的应用,命题的真假的应用,考查计算能力.14.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数an与所搭三角形的个数n之间的关系式可以是________.参考答案:an=2n+115.f(x)=ax3﹣x2+x+2,,?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),则实数a的取值范围是.参考答案:[﹣2,+∞)【考点】全称命题.【分析】求出g(x)的最大值,问题转化为ax3﹣x2+x+2≥0在(0,1]恒成立,即a≥在(0,1]恒成立,令h(x)=,x∈(0,1],根据函数的单调性求出a的范围即可.【解答】解:g′(x)=,而x∈(0,1],故g′(x)>0在(0,1]恒成立,故g(x)在(0,1]递增,g(x)max=g(1)=0,若?x1∈(0,1],?x2∈(0,1],使得f(x1)≥g(x2),只需f(x)min≥g(x)max即可;故ax3﹣x2+x+2≥0在(0,1]恒成立,即a≥在(0,1]恒成立,令h(x)=,x∈(0,1],h′(x)=>0,h(x)在(0,1]递增,故h(x)max=h(1)=﹣2,故a≥﹣2,故答案为:[﹣2,+∞).16.已知向量a=(2cosα,2sinα),b=(2cosβ,2sinβ),且直线2xcosα-2ysinα+1=0与圆(x-cosβ)2+(y+sinβ)2=1相切,则向量a与b的夹角为________.参考答案:17.已知直线经过椭圆的一个顶点和一个焦点,则这个椭圆的方程为
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分12分)已知函数.(Ⅰ)求的最小值;(Ⅱ)若对所有都有,求实数的取值范围.参考答案:解:的定义域为,
的导数.
令,解得;令,解得.从而在单调递减,在单调递增.所以,当时,取得最小值.
···························································6分(Ⅱ)解法一:令,则,①若,当时,,故在上为增函数,所以,时,,即.②若,方程的根为,此时,若,则,故在该区间为减函数.所以时,,即,与题设相矛盾.
综上,满足条件的的取值范围是.
解法二:依题意,得在上恒成立,即不等式对于恒成立.令,
则.
当时,因为,
故是上的增函数,
所以的最小值是,所以的取值范围是.
12分19.(本小题满分12分)在四棱锥中,底面,底面是直角梯形,,,,.(Ⅰ)求证:平面;(Ⅱ)若点在线段上,且,求三棱锥的体积.参考答案:(Ⅰ)在直角梯形中,,,∴,,在中,由勾股定理的逆定理知,是直角三角形,且,……………………2分又底面,∴,…………………4分∵,,,∴平面.………………6分(Ⅱ),……………8分∵,∴,……………10分∴.……………12分20.(本小题满分12分)
如图,已知四棱锥中,底面是边长为2的正方形,侧棱底面,且为侧棱的中点。(1)求证:平面;(2)求二面角余弦值的大小。参考答案:21.(本小题满分15分)已知椭圆的对称轴为坐标轴,焦点是,又点在椭圆上.(1)求椭圆的方程;(2)已知直线的斜率为,若直线与椭圆交于、两点,求面积的最大值.参考答案:22.某市电信部门规定:拔打市内电话时,如果通话时间不超过3分钟,则收取通话费0.2元,如果通话时间超过
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权购买合同:影视作品版权购买与授权
- 2024年度成建制劳务分包商的违约责任合同
- 2024年度不锈钢栏杆工程承包合同
- 2024年度农业企业社会责任履行与评估合同
- 2024年度智能制造生产线购销合同
- 比基尼泳装市场发展现状调查及供需格局分析预测报告
- 2024年度城中村改造拆除合同
- 2024年度企业并购重组顾问合同(标的:亿元并购咨询服务)
- 2024年度人力资源服务合同标的为人才招聘外包
- 2024年度版权许可合同:音乐作品《梦回2024》的线上线下播放权许可
- 国家电网公司电力客户档案管理规定
- 单相接地电容电流的计算分析1
- 《工程经济学》课后习题答案•计算题答案(刘晓君版)
- (完整word版)A4红色稿纸模板.doc
- 预应力锚杆设计计算书文档
- 雷士灯具检测报告
- 群众问题诉求台帐.doc
- 大中专毕业生转正定级表
- 高强Q460钢焊接作业指导书
- (完整版)小学四年级英语阅读理解20篇)
- 砸墙安全责任书
评论
0/150
提交评论