山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析_第1页
山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析_第2页
山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析_第3页
山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析_第4页
山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山西省临汾市洪洞县赵城永安中学2022-2023学年高二数学理联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知双曲线的左、右焦点分别为F1、F2,若在双曲线的右支上存在一点P,使得|PF1|=3|PF2|,则双曲线的离心率e的取值范围为()A.[,+∞) B.[2,+∞) C. D.(1,2]参考答案:D【考点】双曲线的简单性质.【分析】设P点的横坐标为x,根据|PF1|=3|PF2|,P在双曲线右支(x≥a),利用双曲线的第二定义,可得x关于e的表达式,进而根据x的范围确定e的范围.【解答】解:设P点的横坐标为x∵|PF1|=3|PF2|,P在双曲线右支(x≥a)根据双曲线的第二定义,可得3e(x﹣)=e(x+)∴ex=2a∵x≥a,∴ex≥ea∴2a≥ea,∴e≤2∵e>1,∴1<e≤2故选D.【点评】本题主要考查了双曲线的简单性质,考查了双曲线的第二定义的灵活运用,属于基础题.2.设不等式组表示的平面区域为,在区域内随机取一个点,则此点到坐标原点的距离大于等于2的概率是(

)A.

B.

C.

D.

参考答案:A略3.设M=2a(a-2)+7,N=(a-2)(a-3),则有()A.M>NB.M≥N

C.M<N

D.M≤N参考答案:A4.右图是2010年青年歌手大奖赛中,七位评委为甲、乙两名选手打出的分数的茎叶图(其中m为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为,,则一定有(

)A.

B.

C.

D.,的大小与m的值有关参考答案:B略5.

函数的图象可能是

参考答案:D略6.b=c=0是二次函数y=ax2+bx+c的图象经过原点的A.充分不必要条件

B.必要不充分条件

C.充要条件

D.既不充分也不必要条件参考答案:A略7.设a+b<0,且b>0,则

A.b2>a2>abB.a2<b2<-abC.a2<-ab<b2D.a2>-ab>b2

参考答案:解析:注意到条件简明与选项的复杂,考虑运用特值法:

取a=-2,b=1,则a2=4,b2=1,ab=-2,-ab=2由此否定A,B,C,应选D

8.二进制数转化为八进制数是(

)A.B.C.D.参考答案:B9.抛物线y2=4x上一点P到焦点F的距离是10,则P点的坐标是()A.(9,6) B.(6,9) C.(±6,9) D.(9,±6)参考答案:D【考点】抛物线的定义.【分析】先求出抛物线的准线,再由P到焦点的距离等于其到准线的距离,从而可确定P的横坐标,代入抛物线方程可确定纵坐标,从而可确定答案.【解答】解:∵抛物线y2=4x的准线为:x=﹣1抛物线y2=4x上一点P到焦点F的距离是10,∴P到x=﹣1的距离等于10设P(x,y)∴x=9代入到抛物线中得到y=±6故选D.10.已知a>0,函数f(x)=x3﹣ax在[1,+∞)上是单调增函数,则a的最大值是()A.0 B.1 C.2 D.3参考答案:D【考点】利用导数研究函数的单调性.【分析】由题意a>0,函数f(x)=x3﹣ax,首先求出函数的导数,然后根据导数与函数单调性的关系进行判断.【解答】解:由题意得f′(x)=3x2﹣a,∵函数f(x)=x3﹣ax在[1,+∞)上是单调增函数,∴在[1,+∞)上,f′(x)≥0恒成立,即a≤3x2在[1,+∞)上恒成立,∴a≤3,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.给出以下四个命题:①如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.

②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.③如果两条直线都平行于一个平面,那么这两条直线互相平行.④如果两个平面垂直,那么一个平面内垂直于交线的直线垂直于另一个平面。.其中命题正确的是 (填序号)参考答案:

①、②、④12.若,则x的值为

.参考答案:3和5由,则或x+3x-6=14,解得或5.

13.若复数z满足,则的最小值为

.参考答案:14.函数的最大值为____.参考答案:1【分析】先写出函数的定义域,利用导数得到函数的单调区间,由单调性即可得函数最值.【详解】函数f(x)的定义域为,对函数求导得,=0,x=1,当时,,则函数在上单调递增,当时,,则函数在上单调递减,则当x=1时函数f(x)取得最大值为f(1)=1,故答案为:1【点睛】本题考查利用导数研究函数的最值和单调性,属于基础题.15.已知点P为椭圆在第一象限部分上的点,则的最大值等于

参考答案:216.在掷一次骰子的游戏中,向上的数字是1或6的概率是____________.参考答案:略17.在类比此性质,如下图,在四面体P-ABC中,若PA、PB、PC两两垂直,底面ABC上的高为h,则得到的正确结论为__________________________.参考答案:

三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知圆C经过A(1,3),B(﹣1,1)两点,且圆心在直线y=x上.(Ⅰ)求圆C的方程;(Ⅱ)设直线l经过点(2,﹣2),且l与圆C相交所得弦长为,求直线l的方程.参考答案:【考点】直线与圆的位置关系.【专题】综合题;分类讨论;综合法;直线与圆.【分析】(Ⅰ)设圆C的圆心坐标为(a,a),利用CA=CB,建立方程,求出a,即可求圆C的方程;(Ⅱ)分类讨论,利用圆心到直线的距离公式,求出斜率,即可得出直线方程.【解答】解:(Ⅰ)设圆C的圆心坐标为(a,a),依题意,有,即a2﹣6a+9=a2+2a+1,解得a=1,所以r2=(1﹣1)2+(3﹣1)2=4,所以圆C的方程为(x﹣1)2+(y﹣1)2=4.(Ⅱ)依题意,圆C的圆心到直线l的距离为1,所以直线x=2符合题意.设直线l方程为y+2=k(x﹣2),即kx﹣y﹣2k﹣2=0,则,解得,所以直线l的方程为,即4x+3y﹣2=0.综上,直线l的方程为x﹣2=0或4x+3y﹣2=0.【点评】本题考查圆的标准方程,考查直线与圆的位置关系,考查学生的计算能力,正确运用点到直线的距离公式是关键.19.在平面直角坐标系xOy中,点B与点A(-1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.(1)求动点P的轨迹方程;(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.参考答案:略20.(12分)某小区新开了一家“重庆小面”面馆,店主统计了开业后五天中每天的营业额(单位:百元),得到下表中的数据,分析后可知y与x之间具有线性相关关系.天数(x)12345营业额(y)13678

(1)求营业额关于天数x的线性回归方程;(2)试估计这家面馆第6天的营业额.附:回归直线方程中,,.参考答案:(1),,,,所以回归直线为.………8分(2)当时,,即第6天的营业额预计为(百元).

………12分

21.已知经过原点的直线与椭圆C:交于A,B两点,点P为椭圆上不同于A、B的一点,直线PA、PB的斜率均存在,且直线PA、PB的斜率之积为.(1)求椭圆C的离心率;(2)若,设F1、F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M、N两点,若点F1在以为直径的圆内部,求k的取值范围.参考答案:(1)设则,,∵点三点均在椭圆上,∴,,∴作差得,∴,∴.(2)∵,,∴,,设,,直线的方程为,记,,联立得,,∴,,当点在以为直径的圆内部时,,∴,得,解得.

22.已知函数,在时取得极值.(I)求函数的解析式;(II)若时,恒成立,求实数m的取值范围;(III)若,是否存在实数b,使

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论