版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年湖北省武汉市经济技术开发区汉阳第三中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.如图,Rt△ABC中,CD为斜边AB上的高,CD=6,且AD:BD=3:2,则斜边AB上的中线CE的长为()A.5
B.
C.
D.参考答案:B略2.任何一个算法都必须有的基本结构是()A.顺序结构 B.条件结构 C.循环结构 D.三个都有参考答案:A【考点】E5:顺序结构.【分析】根据程序的特点,我们根据程序三种逻辑结构的功能,分析后,即可得到答案.【解答】解:根据算法的特点如果在执行过程中,不需要分类讨论,则不需要有条件结构;如果不需要重复执行某些操作,则不需要循环结构;但任何一个算法都必须有顺序结构故选A【点评】本题考查的知识点是程序的三种结构,熟练掌握三种逻辑结构的功能是解答本题的关键,是对基础知识的直接考查,比较容易.3.实数集R,设集合,则A.[2,3] B.(1,3)C.(2,3] D.(-∞,-2]∪[1,+∞)参考答案:D【分析】求出集合P,Q,从而求出,进而求出.【详解】∵集合P={x|y}={x|}={x|},=,∴={x|或},∴={x|x≤﹣2或x1}=(﹣∞,﹣2]∪[1,+∞).故选:D.【点睛】本题考查并集、补集的求法,涉及函数的定义域及不等式的解法问题,是基础题.4.设定义在R上的函数是最小正周期为2的偶函数,是的导函数,当∈[0,]时,;当∈(0,)且≠时,.则函数在[-2,2]上的零点个数为(
)A.2
B.4
C.5
D.8参考答案:B略5.针对时下的“抖音热”,某校团委对“学生性别和喜欢抖音是否有关”作了一次调查,其中被调查的女生人数是男生人数的,男生喜欢抖音的人数占男生人数的,女生喜欢抖音的人数占女生人数若有95%的把握认为是否喜欢抖音和性别有关,则男生至少有(
)人.(K2≥k0)0.0500.010k03.8416.635A.12 B.6 C.10 D.18参考答案:A【分析】由题,设男生人数x,然后列联表,求得观测值,可得x的范围,再利用人数比为整数,可得结果.【详解】设男生人数为,则女生人数为,则列联表如下:
喜欢抖音不喜欢抖音总计男生女生总计
若有95%的把握认为是否喜欢抖音和性别有关,则即解得又因为为整数,所以男生至少有12人故选A【点睛】本题是一道关于独立性检验的题目,总体方法是运用列联表进行分析求解,属于中档题.6.设有一个直线回归方程为,则变量x增加一个单位时(
)
A.
y平均增加1.5个单位
B.
y平均增加2个单位
C.
y平均减少1.5个单位
D.
y平均减少2个单位参考答案:C略7.某学生记忆导数公式如下,其中错误的一个是(
)A.
B.
C.
D.参考答案:C略8.函数的最小正周期为
A.
B. C.
D.参考答案:A略9.已知p:x2-1≥-1,q:4+2=7,则下列判断中,错误的是()A.p为真命题,p且q为假命题
B.p为假命题,q为假命题C.q为假命题,p或q为真命题
D.p且q为假命题,p或q为真命题参考答案:B10.设f(x)=lg是奇函数,则使f(x)<0的x的取值范围是 ().A.(-1,0)
B.(0,1)C.(-∞,0)
D.(-∞,0)∪(1,+∞)参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11.已知.若,且,则____,集合____.
参考答案:,12.若函数恰有3个单调区间,则a的取值范围为
参考答案:(,0)13.求曲线在点处的切线方程为
参考答案:
14.抛掷两颗质量均匀的骰子各一次,其中恰有一个点数为2的概率为.参考答案:【考点】古典概型及其概率计算公式.【专题】计算题;对应思想;综合法;概率与统计.【分析】求出所有的基本事件个数和符合要求的事件个数,代入古典概型的概率公式即可.【解答】解:抛掷两颗质量均匀的骰子各一次共有6×6=36个基本事件,其中恰有一个点数为2的事件共有10个,分别是(2,1),(2,3),(2,4),(2,5),(2,6),(1,2),(3,2),(4,2),(5,2),(6,2),∴恰有一个点数为2的概率P==.故答案为.【点评】本题考查了古典概型的概率计算,属于基础题.15.已知f(x)=,则f(f())=_______.参考答案:略16.某单位有职工200名,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1﹣200编号,并按编号顺序平均分为40组(1﹣5号,6﹣10号,…,196﹣200号).若第5组抽出的号码为22,则第8组抽出的号码应是.参考答案:37【考点】系统抽样方法.【分析】由分组可知,抽号的间隔为5,第5组抽出的号码为22,可以一次加上5得到下一组的编号,第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.【解答】解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.故答案为:37.17.记椭圆=1围成的区域(含边界)为Ωn(n=1,2,3…),当点(x,y)分别在Ω1,Ω2,…上时,x+y的最大值分别是M1,M2,…,则=.参考答案:2【考点】椭圆的简单性质.【分析】将椭圆的标准方程转化成参数方程,x+y=2cosθ+sinθ=sin(θ+φ),根据正弦函数的性质可知:(x+y)max==.Mn==2.【解答】解:把椭圆=1得,椭圆的参数方程为:(θ为参数),∴x+y=2cosθ+sinθ=sin(θ+φ),由正弦函数的性质可知:当sin(θ+φ)=1时,x+y取最大值,∴(x+y)max==.∴Mn==2,故答案为:2.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在ABC中,C=90°,AC=b,BC=a,P为三角形内的一点,且,(Ⅰ)建立适当的坐标系求出P的坐标;(Ⅱ)求证:│PA│2+│PB│2=5│PC│2
(Ⅲ)若a+2b=2,求以PA,PB,PC分别为直径的三个圆的面积之和的最小值,并求出此时的b值.参考答案:以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再分别用两点距离公式即可,(3)将a=2-2b代入s的表达式,得到b的一个二次函数.当b=0.8时,s最小.
本试题主要是考查了建立直角坐标系来表示面积,得到二次函数的最值的问题。根据已知条件先以边CA、CB所在直线分别为x轴、y轴建立直角坐标系,,设A()、B(0,b),P点的坐标为(x,y),由条件可知=,可求出x=,y=b,再运用两点距离公式得到关于b的表达式,进而得到面积的最小值。
19.(本题10分)已知命题若非是的充分不必要条件,求的取值范围.参考答案:而,即.20.(本题满分14分)已知函数(Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的取值范围.参考答案:解:.
---------2分(Ⅰ),解得.
---------3分(Ⅱ).
①当时,,,在区间上,;在区间上,故的单调递增区间是,单调递减区间是.
②当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.
③当时,,故的单调递增区间是.
④当时,,在区间和上,;在区间上,故的单调递增区间是和,单调递减区间是.
--------9分(Ⅲ)由已知,在上有.
---------10分由已知,,由(Ⅱ)可知,①当时,在上单调递增,故,所以,,解得,故.
②当时,在上单调递增,在上单调递减,故.由可知,,,所以,,,
综上所述,.
---------14分21.(1)求证.(2)设x,y都是正数,且x+y>2证明:和中至少有一个成立.参考答案:(1)见解析;(2)见解析【分析】(1)用作差法,直接比较与的大小,即可得出结论成立;(2)用反证法,先假设和都不成立,根据题中条件,推出矛盾,即可证明结论成立.【详解】(1)∵=(13+2)-(13+4)=,∴;(2)假设和都不成立,即≥2且≥2,∵x,y都是正数,∴1+x≥2y,1+y≥2x,∴1+x+1+y≥2x+2y,∴x+y≤2,这与已知x+y>2矛盾,∴假设不成立,即和中至少有一个成立.【点睛】本题主要考查证明方法,熟记直接证明与间接证明的方法即可,属于常考
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度第三人民医院保安服务合同
- 2024年度电子商务平台合作经营合同
- 常州人工智能技术研发合同2024年度
- 二零二四年度电梯配套设备采购合同
- 服装加工合同协议书
- 二零二四年度租赁合同:盘扣式脚手架租赁及安装工程协议
- 电梯清包合同(2篇)
- 医保工作人员信息与网络安全保密协议书(2篇)
- 取别人银行卡免责协议书(2篇)
- 合资办学的协议书(2篇)
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 《研学旅行课程设计》课件-学习情境三 研之有方-研学课程教学设计
- 音乐教师职业生涯发展报告
- 海洋生物资源与环境PPT课件
- 储罐施工计划
- 用人单位调查问卷
- 《计算机网络基础》教案(完整版)
- 采煤工作面采煤工艺课程设计.doc
- 公安机关内部控制建设问题研究
- 年晋升司机理论考试HXD1专业知识题库
- 苯氯苯连续精馏塔设计二设计正文
评论
0/150
提交评论