版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022学年河北省邯郸市辛庄营乡中学高二数学文测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.阅读如图所示的程序框图,运行相应的程序,则输出S的值为(
)A.8
B.18
C.26
D.80参考答案:C2.甲乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若a=b或a=b-1,就称甲乙“心有灵犀”,现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为(
)A.
B.
C.
D.参考答案:C3.已知空间四边形O-ABC,其对角线为OB,AC,M,N分别是OA,CB的中点,点G在线段MN上,且使MG=3GN,用向量,,表示向量,则A.B.C.D.参考答案:D4.设双曲线﹣=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于()A. B. C. D.2参考答案:C【考点】双曲线的简单性质.【分析】求出双曲线的渐近线方程,代入抛物线方程,运用相切的条件:判别式为0,解方程,可得a,b的关系,再由双曲线的a,b,c的关系和离心率公式,计算即可得到.【解答】解:双曲线﹣=1(a>0,b>0)的渐近线方程为y=±x,代入抛物线方程y=x2+1,得x2x+1=0,由相切的条件可得,判别式﹣4=0,即有b=2a,则c===a,则有e==.故选C.5.曲线在点处的切线方程为(
).A.
B.
C.
D.参考答案:B6.不等式的解集是(
)A.x<3
B.x>-1
C.x<-1或x>3
D.-1<x<3
参考答案:A略7.若,则不等式:①;②;③;④中正确的不等式个数(
)(A)4
(B)3
(C)2
(D)
1参考答案:A8.若命题,则是A.
B.C.
D.参考答案:A9.已知数列、都是公差为1的等差数列,其首项分别为、,且,.设(),则数列的前10项和等于()A.55
B.70C.85D.100参考答案:C10.曲线在点(1,1)处的切线方程为(
)A. B. C. D.参考答案:D【分析】求得函数的导数,得到,再利用直线的点斜式方程,即可求解.【详解】由题意,函数,则,所以,即切线斜率为,∴切线方程为,即,故选D.【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,准确计算是解答的关键,着重考查了运算与求解能力,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.
.参考答案:12.如左下图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的表面积为(
)
A.3π
B.2π
C.4π
D.参考答案:D略13.方程恒有实数解,则实数的取值范围是__▲
_.参考答案:【知识点】二次函数的图象与性质【答案解析】解析:解:由得,因为,所以若方程有实数解,则m的范围是【思路点拨】一般遇到方程有实数解问题,可通过分离参数法转化为求函数的值域问题进行解答.14.设集合A={a|f(x)=8x3﹣3ax2+6x是(0,+∞)上的增函数},B={y|y=,x∈},则?R(A∩B)=.参考答案:(﹣∞,1)∪(2,+∞)【考点】3F:函数单调性的性质;1H:交、并、补集的混合运算.【分析】先对已知函数求导,然后由f′(x)≥0在(0,+∞)上恒成立可求a的范围,即可求解A由y=在上的单调性可求B,进而可求A∩B,即可求解CR(A∩B)【解答】解:∵若f(x)=8x3﹣3ax2+6x在(0,+∞)上的增函数,则f′(x)=24x2﹣6ax+6≥0即a≤=4x+在(0,+∞)上恒成立∵=4x+≥4∴a≤4∴A={a|f(x)=8x3﹣3ax+6x(0,+∞)上的增函数}=(﹣∞,4]∵的图象由的图象左移两个单位得到故在上函数为减函数∴=[1,5],∴A∩B=[1,4]则CR(A∩B)=(﹣∞,1)∪(4,+∞)故答案为:(﹣∞,1)∪(4,+∞)【点评】本题以集合的基本运算为载体,主要考查了导数在函数的单调性的性中的应用及函数的图象的平移、及函数的单调性在求解值域中的应用,试题具有一定的综合性15.如图是y=f(x)的导函数的图象,现有四种说法:(1)f(x)在(-3,1)上是增函数;(2)x=-1是f(x)的极小值点;(3)f(x)在(2,4)上是减函数,在(-1,2)上是增函数;(4)x=2是f(x)的极小值点;以上正确的序号为________.参考答案:②略16.如图是一个正方体的表面展开图,A、B、C均为棱的中点,D是顶点,则在正方体中,异面直线AB和CD的夹角的余弦值为
。参考答案:17.双曲线的焦距为
.(用数字填写)参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(1)求点M(2,)到直线ρ=的距离。(2)求曲线关于直线y=1对称的曲线的参数方程参考答案:略19.已知△ABC的内角A,B,C的对边分别为a,b,c,且.(1)求角A的大小;(2)若,求△ABC面积的最大值.参考答案:(1);(2).【分析】(1)利用正弦定理化简边角关系式,结合两角和差正弦公式和三角形内角和的特点可求得,根据的范围求得结果;(2)利用余弦定理构造等式,利用基本不等式可求得的最大值,代入三角形面积公式即可求得结果.【详解】(1)由正弦定理得:,即:,
(2)由(1)知:由余弦定理得:(当且仅当时等号成立)∴(当且仅当时等号成立)的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、两角和差正弦公式的应用、余弦定理和三角形面积公式的应用、利用基本不等式求最值的问题,属于常考题型.20.已知函数在处取得极值.(1)求,并求函数在点处的切线方程;(2)求函数的单调区间.参考答案:(1)因为,所以. 1分因为在处取得极值,所以,即,解得所以. 3分因为,,,所以函数在点处的切线方程为. 6分(2)由(1),令,即,解得,所以的单调递增区间为. 9分令,即,解得或,所以的单调递减区间为,.综上,的单调递减区间为和,单调递增区间为. 12分21.已知函数在区间[0,3]上有最大值3和最小值-1.(1)求实数的值;(2)设,若不等式在上恒成立,求实数的取值范围.参考答案:(1)∵的对称轴是,又∵.∴在上单调递减,在上单调递增;∴当时,取最小值,当时,取最大值3;即,解得.(2)∵,∴,∴,∴,令,则在上是增函数,故,∴在上恒成立时,.22.(本小题满分16分)如图,在平面直角坐标系中,已知圆:,圆:.(1)若过点的直线被圆截得的弦长为,求直线的方程;(2)设动圆同时平分圆的周长、圆的周长.
①证明:动圆圆心C在一条定直线上运动;②动圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.
参考答案:解:(1)设直线的方程为,即.
因为直线被圆截得的弦长为,而圆的半径为1,所以圆心到:的距离为.…………3分
化简,得,解得或.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大学教师辞职申请书合集五篇
- 中国人寿实习报告五篇
- 高中生社会实践报告集锦15篇
- 学生细节决定成败演讲稿汇编9篇
- 2023物业年度工作报告5篇
- 公司员工部门2022年度工作计划例文
- 时间主题演讲稿15篇
- 教科版小学四年级下册科学全册教案设计
- 住在茶园的诗句
- 入学报名住房合同(2篇)
- 山东省滨州市2023-2024学年高一上学期1月期末考试 政治 含答案
- 电力行业电力调度培训
- 【MOOC】气排球-东北大学 中国大学慕课MOOC答案
- 全力以赴备战期末-2024-2025学年上学期备战期末考试主题班会课件
- 《庆澳门回归盼祖国统一》主题班会教案
- 物流公司自然灾害、突发性事件应急预案(2篇)
- 《视频拍摄与制作:短视频 商品视频 直播视频(第2版)》-课程标准
- 公司战略与风险管理战略实施
- 2024年-2025年《农作物生产技术》综合知识考试题库及答案
- 洗衣房工作人员岗位职责培训
- 广东省深圳市光明区2022-2023学年五年级上学期数学期末试卷(含答案)
评论
0/150
提交评论