




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于()A.8 B.4 C.10 D.52.坡比常用来反映斜坡的倾斜程度.如图所示,斜坡AB坡比为().A.:4 B.:1 C.1:3 D.3:13.如图,点A是双曲线在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线上运动,则k的值为()A.1 B.2 C.3 D.44.下列图形中,是中心对称图形但不是轴对称图形的是()A. B. C. D.5.如图,河堤横断面迎水坡的坡比是,堤高,则坡面的长度是()A. B. C. D.6.下列计算中正确的是()A. B. C. D.7.如图,平行于x轴的直线与函数y1=(a>1,x>1),y2=(b>1.x>1)的图象分别相交于A、B两点,且点A在点B的右侧,在X轴上取一点C,使得△ABC的面积为3,则a﹣b的值为()A.6 B.﹣6 C.3 D.﹣38.如图,轴右侧一组平行于轴的直线···,两条相邻平行线之间的距离均为,以点为圆心,分别以···为半径画弧,分别交轴,···于点···则点的坐标为()A. B.C. D.9.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=210.下列四个图形中,不是中心对称图形的是()A. B.C. D.11.如图,正五边形ABCDE内接于⊙O,则∠ABD的度数为()A.60° B.72° C.78° D.144°12.已知关于x的一元二次方程(k﹣1)x2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<﹣2 B.k<2 C.k>2 D.k<2且k≠1二、填空题(每题4分,共24分)13.如图,抛物线y=﹣x2+mx+2m2(m>0)与x轴交于A,B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A,B不重合),D是OC的中点,连结BD并延长,交AC于点E,则的值是_____________.14.若点P(3,1)与点Q关于原点对称,则点Q的坐标是___________.15.如图,在矩形中,,点分别在矩形的各边上,,则四边形的周长是______________.16.如图,在的同侧,,点为的中点,若,则的最大值是_____.17.如图,在△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B=______18.抛物线y=3(x+2)2+5的顶点坐标是_____.三、解答题(共78分)19.(8分)在等边中,点为上一点,连接,直线与分别相交于点,且.(1)如图(1),写出图中所有与相似的三角形,并选择其中的一对给予证明;(2)若直线向右平移到图(2)、图(3)的位置时,其他条件不变,(1)中的结论是否仍然成立?若成立请写出来(不证明),若不成立,请说明理由;(3)探究:如图(1),当满足什么条件时(其他条件不变),?请写出探究结果,并说明理由(说明:结论中不得含有未标识的字母).20.(8分)为了“创建文明城市,建设美丽台州”,我市某社区将辖区内一块不超过1000平方米的区域进行美化.经调查,美化面积为100平方米时,每平方米的费用为300元.每增加1平方米,每平方米的费用下降0.2元。设美化面积增加x平方米,美化所需总费用为y元.(1)求y与x的函数关系式;(2)当美化面积增加100平方米时,美化的总费用为多少元;(3)当美化面积增加多少平方米时,美化所需费用最高?最高费用是多少元?21.(8分)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN=AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.22.(10分)已知:中,.(1)求作:的外接圆;(要求:尺规作图,保留作图痕迹,不写作法)(2)若的外接圆的圆心到边的距离为4,,求的面积.23.(10分)如图,在下列10×10的网格中,横、纵坐标均为整点的数叫做格点,例如A(2,1)、B(5,4)、C(1,8)都是格点.(1)直接写出△ABC的面积;(2)将△ABC绕点B逆时针旋转90°得到△A1BC1,在网格中画出△A1BC1;(3)在图中画出线段EF,使它同时满足以下条件:①点E在△ABC内;②点E,F都是格点;③EF三等分BC;④EF=.请写出点E,F的坐标.24.(10分)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;(3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.25.(12分)如图是输水管的切面,阴影部分是有水部分,其中水面AB宽10cm,水最深3cm,求输水管的半径.26.已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE下方抛物线上一动点,求△PAE面积的最大值;(3)动点Q在x轴上移动,当△QAE是直角三角形时,直接写出点Q的坐标;(4)若点M在y轴上,点F在抛物线上,问是否存在以A、E、M、F为顶点的平行四边形,若存在直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【详解】解:∵OM⊥AB,∴AM=AB=4,由勾股定理得:OA===5;故选D.2、A【分析】利用勾股定理可求出AC的长,根据坡比的定义即可得答案.【详解】∵AB=3,BC=1,∠ACB=90°,∴AC==,∴斜坡AB坡比为BC:AC=1:=:4,故选:A.【点睛】本题考查坡比的定义,坡比是坡面的垂直高度与水平宽度的比;熟练掌握坡比的定义是解题关键.3、B【解析】试题分析:连接CO,过点A作AD⊥x轴于点D,过点C作CE⊥x轴于点E,∵连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=220°,∴CO⊥AB,∠CAB=30°,则∠AOD+∠COE=90°,∵∠DAO+∠AOD=90°,∴∠DAO=∠COE,又∵∠ADO=∠CEO=90°,∴△AOD∽△OCE,∴=tan60°=,则=3,∵点A是双曲线在第二象限分支上的一个动点,∴=AD•DO=×6=3,∴k=EC×EO=2,则EC×EO=2.故选B.考点:2.反比例函数图象上点的坐标特征;2.综合题.4、D【分析】根据中心对称图形和轴对称图形的定义即可得解.【详解】A、不是中心对称图形,也不是轴对称图形,此项错误B、是中心对称图形,也是轴对称图形,此项错误C、不是中心对称图形,是轴对称图形,此项错误D、是中心对称图形,但不是轴对称图形,此项正确故选:D.【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、D【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】∵河堤横断面迎水坡AB的坡比是,∴,∴,解得:AC=,故AB===8(m),故选:D.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.6、D【分析】直接利用二次根式混合运算法则分别判断得出答案.【详解】A、无法计算,故此选项不合题意;B、,故此选项不合题意;C、,故此选项不合题意;D、,正确.故选D.【点睛】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.7、A【分析】△ABC的面积=•AB•yA,先设A、B两点坐标(其y坐标相同),然后计算相应线段长度,用面积公式即可求解.【详解】设A(,m),B(,m),则:△ABC的面积=•AB•yA=•(﹣)•m=3,则a﹣b=2.故选A.【点睛】此题主要考查了反比例函数系数的几何意义,以及图象上点的特点,求解函数问题的关键是要确定相应点坐标,通过设A、B两点坐标,表示出相应线段长度即可求解问题.8、C【分析】根据题意,利用勾股定理求出,,,,的纵坐标,得到各点坐标,找到规律即可解答.【详解】如图,连接、、,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,点的纵坐标为,点的坐标为,∴点的坐标为,故选:C【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用勾股定理是解题的关键.9、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.10、B【分析】根据中心对称图形的概念,即可求解.【详解】A、是中心对称图形,故此选项不合题意;B、不是中心对称图形,故此选项符合题意;C、是中心对称图形,故此选项不合题意;D、是中心对称图形,故此选项不合题意.故选:B.【点睛】本题主要考查中心对称图形的概念掌握它的概念“把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形”,是解题的关键.11、B【分析】如图(见解析),先根据正五边形的性质得圆心角的度数,再根据圆周角定理即可得.【详解】如图,连接OA、OE、OD由正五边形的性质得:由圆周角定理得:(一条弧所对圆周角等于其所对圆心角的一半)故选:B.【点睛】本题考查了正五边形的性质、圆周角定理,熟记性质和定理是解题关键.12、D【分析】根据方程有两个不相等的实数根,得到一元二次方程的二次项系数不为零、根的判别式的值大于零,从而列出关于的不等式组,求出不等式组的解集即可得到的取值范围.【详解】根据题意得:,且,解得:,且.故选:D.【点睛】本题考查了一元二次方程的定义以及根的判别式,能够准确得到关于的不等式组是解决问题的关键.二、填空题(每题4分,共24分)13、【分析】过点O作OH∥AC交BE于点H,根据A、B的坐标可得OA=m,OB=2m,AB=3m,证明OH=CE,将根据,可得出答案.【详解】解:过点O作OH∥AC交BE于点H,令y=x2+mx+2m2=0,∴x1=-m,x2=2m,∴A(-m,0)、B(2m,0),∴OA=m,OB=2m,AB=3m,∵D是OC的中点,∴CD=OD,∵OH∥AC,∴,∴OH=CE,∴,∴,故答案为:.【点睛】本题主要考查了抛物线与x轴的交点问题,解题的关键是过点O作OH∥AC交BE于点H,此题有一定的难度.14、(–3,–1)【分析】根据关于原点对称的点的规律:纵横坐标均互为相反数解答即可.【详解】根据关于原点对称的点的坐标的特点,可得:点P(3,1)关于原点过对称的点Q的坐标是(–3,–1).故答案为:(–3,–1).【点睛】本题主要考查了关于原点对称的点的坐标特点,解题时根据两个点关于原点对称时,它们的同名坐标互为相反数可直接得到答案,本题属于基础题,难度不大,注意平面直角坐标系中任意一点P(x,y),关于原点的对称点是(–x,–y),即关于原点的对称点,横纵坐标都变成相反数.15、【分析】根据矩形的对角线相等,利用勾股定理求出对角线的长度,然后根据平行线分线段成比例定理列式表示EF、EH的长度之和,再根据四边形EFGH是平行四边形,即可得解.【详解】解:∵矩形中,,由勾股定理得:,∵EF∥AC,∴,∵EH∥BD,∴,∴,∴,∵EF∥HG,EH∥FG,∴四边形EFGH是平行四边形,∴四边形EFGH的周长=,故答案为:.【点睛】本题考查了平行线分线段成比例定理、矩形的对角线相等和勾股定理,根据平行线分线段成比例定理得出是解题的关键,也是本题的难点.16、14【分析】如图,作点A关于CM的对称点A′,点B关于DM的对称点B′,证明△A′MB′为等边三角形,即可解决问题.【详解】解:如图,作点关于的对称点,点关于的对称点.,,,,,为等边三角形,的最大值为,故答案为.【点睛】本题考查等边三角形的判定和性质,两点之间线段最短,解题的关键是学会添加常用辅助线,学会利用两点之间线段最短解决最值问题17、【解析】如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90∘,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD−C′D=−1.故答案为:−1.点睛:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.18、(﹣2,5)【分析】已知抛物线的顶点式,可直接写出顶点坐标.【详解】解:由y=3(x+2)2+5,根据顶点式的坐标特点可知,顶点坐标为(﹣2,5).故答案为:(﹣2,5).【点睛】本题考查二次函数的性质,熟知二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,顶点坐标为(h,k),对称轴为x=h.三、解答题(共78分)19、(1)△BPF∽△EBF,△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,(3)当BD平分∠ABC时,PF=PE.【分析】(1)由两角对应相等的三角形是相似三角形找出△BPF∽△EBF,△BPF∽△BCD,这两组三角形都可由一个公共角和一组60°角来证明;(2)成立,证法同(1);(3)先看PF=PE能得出什么结论,根据△BPF∽△EBF,可得BF2=PF∙PE=3PF2,因此,因为,可得∠PFB=90°,则∠PBF=30°,由此可得当BD平分∠ABC时,PF=PE.【详解】解:(1)△BPF∽△EBF,△BPF∽△BCD,证明如下:∵△ABC是等边三角形,∴∠ABC=∠ACB=∠BAC=60°,∵∠BPF=60°∴∠BPF=∠EBF=60°,∵∠BFP=∠BFE,∴△BPF∽△EBF;∵∠BPF=∠BCD=60°,∠PBF=∠CBD,∴△BPF∽△BCD;(2)均成立,分别为△BPF∽△EBF,△BPF∽△BCD,证明如下:如图(2)∵∠BPF=∠EBF=60°,∠BFP=∠BFE,∴△BPF∽△EBF;∵∠BPF=∠BCD=60°,∠PBF=∠CBD,∴△BPF∽△BCD.如图(3),同理可证△BPF∽△EBF,△BPF∽△BCD;(3)当BD平分∠ABC时,PF=PE,理由:∵BD平分∠ABC,∴∠ABP=∠PBF=30°.∵∠BPF=60°,∴∠BFP=90°.∴PF=PB又∵∠BEF=60°−30°=30°=∠ABP,∴PB=PE.∴PF=PE.【点睛】本题主要考查了等边三角形的性质、相似三角形的判定与性质,熟练掌握相似三角形的判断是解题的关键.20、(1);(2)当美化面积增加100平方米时,美化的总费用为56000元;(3)当美化面积增加700平方米时,费用最高,最高为128000元【分析】(1)设美化面积增加x平方米,所以美化面积为100+x;每平方米的费用为300元,每增加1平方米,每平方米的费用下降0.2元,所以每平方米的费用为(300-0.2x)元,故总费用y与美化面积增加x的关系式为再化简即可;(2)把x=100代入解析式即可求解;(3)代入顶点坐标公式:当,y取最大值求解即可.【详解】(1)依题意得:故y与x的函数关系式为:(2)令x=100代入,得y=56000.所以当当美化面积增加100平方米时,美化的总费用为56000元(3)因此当时,费用最高,最高为128000元【点睛】本题主要考查二次函数的应用,解题关键在于理解题意列出二次函数的解析式,再利用二次函数的最值解决生活中的最值问题21、(1);(2)①菱形,理由见解析;②AM=,MN=;(3)1.【分析】(1)利用相似三角形的性质求解即可.(2)①根据邻边相等的平行四边形是菱形证明即可.②连接AA′交MN于O.设AM=MA′=x,由MA′∥AB,可得=,由此构建方程求出x,解直角三角形求出OM即可解决问题.(3)如图3中,作NH⊥BC于H.想办法求出NH,CM,利用相似三角形,确定比例关系,构建方程解决问题即可.【详解】解:(1)如图1中,在Rt△ABC中,∵∠C=90°,AC=4,BC=3,∴AB=,∵∠A=∠A,∠ANM=∠C=90°,∴△ANM∽△ACB,∴=,∵AN=AC∴=,∴AM=.(2)①如图2中,∵NA′∥AC,∴∠AMN=∠MNA′,由翻折可知:MA=MA′,∠AMN=∠NMA′,∴∠MNA′=∠A′MN,∴A′N=A′M,∴AM=A′N,∵AM∥A′N,∴四边形AMA′N是平行四边形,∵MA=MA′,∴四边形AMA′N是菱形.②连接AA′交MN于O.设AM=MA′=x,∵MA′∥AB,∴∴=,∴=,解得x=,∴AM=∴CM=,∴CA′===,∴AA′===,∵四边形AMA′N是菱形,∴AA′⊥MN,OM=ON,OA=OA′=,∴OM===,∴MN=2OM=.(3)如图3中,作NH⊥BC于H.∵NH∥AC,∴△ABC∽△NBH∴==∴==∴NH=,BH=,∴CH=BC﹣BH=3﹣=,∴AM=AC=,∴CM=AC﹣AM=4﹣=,∵CM∥NH,∴△CPM∽△HPN∴=,∴=,∴PC=1.【点睛】本题考查了相似三角形的综合应用,涉及相似三角形的判定与性质、菱形的判定、勾股定理等知识点,综合性较强,难度较大,解题的关键是综合运用上述知识点.22、(1)详见解析;(2)【分析】(1)分别作出AB、BC的垂直平分线,两条垂直平分线的交点即是圆的圆心,以O为圆心,OB为半径作圆即可,如图所示.(2)已知的外接圆的圆心到边的距离为4,,利用勾股定理即可求出OB2,再根据圆的面积公式即可求解.【详解】解:(1)如图(2)设BC的垂直平分线交BC于点D由题意得:,在Rt中,∴【点睛】本题主要考查的是圆的外接三角形尺规作图法和勾股定理的应用,掌握这两个知识点是解题的关键.23、(1)12;(2)见解析;(3)E(2,4),F(7,8).【分析】(1)用一个矩形的面积分别减去三个直角三角形的面积去计算△ABC的面积;
(2)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可得到△A1BC1;
(3)利用平行线分线段成比例得到CF:BE=2,则EF三等分BC,然后写出E、F的坐标,根据勾股定理求出EF的长度为【详解】解:(1)△ABC的面积=4×7﹣×7×1﹣×3×3﹣×4×4=12;(2)如图,△A1BC1为所作;(3)如图,线段EF为所作,其中E点坐标为(2,4),F点坐标为(7,8),EF的长度为.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了勾股定理.24、(1);(2)当的值最小时,点P的坐标为;(3)点M的坐标为、、或.【解析】由点A、C的坐标,利用待定系数法即可求出抛物线的解析式;连接BC交抛物线对称轴于点P,此时取最小值,利用二次函数图象上点的坐标特征可求出点B的坐标,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,利用配方法可求出抛物线的对称轴,再利用一次函数图象上点的坐标特征即可求出点P的坐标;设点M的坐标为,则,,,分、和三种情况,利用勾股定理可得出关于m的一元二次方程或一元一次方程,解之可得出m的值,进而即可得出点M的坐标.【详解】解:将、代入中,得:,解得:,抛物线的解析式为.连接BC交抛物线对称轴于点P,此时取最小值,如图1所示.当时,有,解得:,,点B的坐标为.抛物线的解析式为,抛物线的对称轴为直线.设直线BC的解析式为,将、代入中,得:,解得:,直线BC的解析式为.当时,,当的值最小时,点P的坐标为.设点M的坐标为,则,,.分三种情况考虑:当时,有,即,解得:,,点M的坐标为或;当时,有,即,解得:,点M的坐标为;当时,有,即,解得:,点M的坐标为综上所述:当是直角三角形时,点M的坐标为、、或【点睛】本题考查待定系数法求二次一次函数解析式、二次一次函数图象的点的坐标特征、轴对称中的最短路径问题以及勾股定理,解题的关键是:由点的坐标,利用待定系数法求出抛物线解析式;由两点之间线段最短结合抛物线的对称性找出点P的位置;分、和三种情况,列出关于m的方程.25、cm【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=AB=×10=5cm,∵最深地方的高度是3cm,∴OD=﹣3,在Rt△OBD中,OB2=BD2+OD2,即=52+(﹣3)2,解得=(cm),∴输水管的半径为cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键.26、(1);(2);(3)或;(4)存在,【分析】(1)求出点A坐标后再利用待
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025签订采购合同范本
- 银行抵押担保借款合同
- 夫妻财产独立协议书
- 溴氨蓝项目风险评估报告
- 广东省东莞市实验中学2024-2025学年高一下学期3月月考英语试卷(含答案)
- 华南理工大学《新时代中国特色社会主义理论与实践研究》2023-2024学年第二学期期末试卷
- 郑州亚欧交通职业学院《品牌策划与管理》2023-2024学年第二学期期末试卷
- 北京科技大学《艺术经济学(二)》2023-2024学年第二学期期末试卷
- 塑料挤吹中空成型机项目安全评估报告
- 广东省韶关市新丰一中2024-2025学年高三下学期第一次模拟-生物试题试卷含解析
- GB/T 24918-2010低温介质用紧急切断阀
- GB/T 14229-1993齿轮接触疲劳强度试验方法
- 乳膏剂制备课件
- 小学英语一般现在时-(演示)课件
- 肾综合征出血热-课件
- 《最后一次讲演》-【精品课件】
- 高一物理 必修二《机车的两种启动方式》教学设计
- 2022年陕西省普通高校职业教育单独招生统一考试模拟题
- 静脉药物调配中心PIVAS静脉用药配置中心静脉药物配置中心静配中心调配工作简介培训教学课件
- 常压热水锅炉产品质量证明书
- 出厂检验报告范本(共3页)
评论
0/150
提交评论