2022年湖南省长沙一中学雨花新华都校中考二模数学试题含解析_第1页
2022年湖南省长沙一中学雨花新华都校中考二模数学试题含解析_第2页
2022年湖南省长沙一中学雨花新华都校中考二模数学试题含解析_第3页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,等边ABC的边长为4,点D,E分别是BC,AC的中点,动点M从点A向点B匀速运动,同时动点N沿BDE匀速运动,点M,N同时出发且运动速度相同,点M到点B时两点同时停止运动,设点M走过的路程为x,AMN的面积为y,能大致

2、刻画y与x的函数关系的图象是()ABCD2下列四个实数中是无理数的是( )A2.5 B1033为了纪念物理学家费米,物理学界以费米(飞米)作为长度单位已知1飞米等于0.000000000000001米,把0.000000000000001这个数用科学记数法表示为()A11015B0.11014C0.011013D0.0110124如图,ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则ABO的周长是( )A10B14C20D225如图,是半圆圆的直径,的两边分别交半圆于,则为的中点,已知,则( )ABCD6互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为2

3、00元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A120元B100元C80元D60元7如图是二次函数y=ax2+bx+c(a,b,c是常数,a0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1对于下列说法:ab0;2a+b=0;3a+c0;a+bm(am+b)(m为实数);当1x3时,y0,其中正确的是()ABCD8若代数式在实数范围内有意义,则x的取值范围是( )ABCD9函数y自变量x的取值范围是( )Ax1Bx1且x3Cx3D1x310函数y=中,x的取值范围是()Ax0Bx2Cx2Dx2二、填空题(共7小题,每小题3分,满分21分)11一个

4、正n边形的中心角等于18,那么n_12掷一枚材质均匀的骰子,掷得的点数为合数的概率是_ .13函数中,自变量的取值范围是_14如图,点C在以AB为直径的半圆上,AB8,CBA30,点D在线段AB上运动,点E与点D关于AC对称,DFDE于点D,并交EC的延长线于点F下列结论:CECF;线段EF的最小值为;当AD2时,EF与半圆相切;若点F恰好落在BC上,则AD;当点D从点A运动到点B时,线段EF扫过的面积是其中正确结论的序号是 15如图是由几个相同的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体至少为_个.16如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点

5、B的坐标为B(),D是AB边上的一点将ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_17如图为二次函数图象的一部分,其对称轴为直线.若其与x轴一交点为A(3,0)则由图象可知,不等式的解集是_.三、解答题(共7小题,满分69分)18(10分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位

6、置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长19(5分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低

7、于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?20(8分)如图,热气球的探测器显示,从热气球 A 看一栋髙楼顶部 B 的仰角为 30,看这栋高楼底部 C 的 俯角为 60,热气球 A 与高楼的水平距离为 120m,求这栋高楼 BC 的高度 21(10分)如图,以D为顶点的抛物线y=x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=x+1求抛物线的表达式;在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由22(10分)某新建火车站站前广场需要

8、绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程该项绿化工程原计划每天完成多少米2?该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23(12分)(定义)如图1,A,B为直线l同侧的两点,过点A作直线1的对称点A,连接AB交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”(运用)如图2,在平面直坐标系xOy中,已知A(2,3),B(2,3)两点(1)C(4,3

9、2),D(4,22),E(4,12(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的等角点,其中m2,APB=,求证:tan2=n(3)若点P是点A,B关于直线y=ax+b(a0)的等角点,且点P位于直线AB的右下方,当APB=60时,求b的取值范围(直接写出结果)24(14分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)

10、1、A【解析】根据题意,将运动过程分成两段分段讨论求出解析式即可【详解】BD=2,B=60,点D到AB距离为, 当0 x2时,y=; 当2x4时,y=. 根据函数解析式,A符合条件.故选A【点睛】本题为动点问题的函数图象,解答关键是找到动点到达临界点前后的一般图形,分类讨论,求出函数关系式2、C【解析】本题主要考查了无理数的定义根据无理数的定义:无限不循环小数是无理数即可求解解:A、2.5是有理数,故选项错误;B、103C、是无理数,故选项正确;D、1.414是有理数,故选项错误故选C3、A【解析】根据科学记数法的表示方法解答.【详解】解:把这个数用科学记数法表示为故选:【点睛】此题重点考查学

11、生对科学记数法的应用,熟练掌握小于0的数用科学记数法表示法是解题的关键.4、B【解析】直接利用平行四边形的性质得出AO=CO,BO=DO,DC=AB=6,再利用已知求出AO+BO的长,进而得出答案【详解】四边形ABCD是平行四边形,AO=CO,BO=DO,DC=AB=6,AC+BD=16,AO+BO=8,ABO的周长是:1故选B【点睛】平行四边形的性质掌握要熟练,找到等值代换即可求解5、C【解析】连接AE,只要证明ABC是等腰三角形,AC=AB即可解决问题.【详解】解:如图,连接AE,AB是直径,AEB=90,即AEBC,EB=EC,AB=AC,C=B,BAC=50,C= (180-50)=6

12、5,故选:C【点睛】本题考查了圆周角定理、等腰三角形的判定和性质、线段的垂直平分线的性质定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题6、C【解析】解:设该商品的进价为x元/件,依题意得:(x+20)=200,解得:x=1该商品的进价为1元/件故选C7、A【解析】由抛物线的开口方向判断a与2的关系,由抛物线与y轴的交点判断c与2的关系,然后根据对称轴判定b与2的关系以及2a+b=2;当x=1时,y=ab+c;然后由图象确定当x取何值时,y2【详解】对称轴在y轴右侧,a、b异号,ab2,故正确;对称轴 2a+b=2;故正确;2a+b=2,b=2a,当x=1时,y=ab+c2

13、,a(2a)+c=3a+c2,故错误;根据图示知,当m=1时,有最大值;当m1时,有am2+bm+ca+b+c,所以a+bm(am+b)(m为实数)故正确如图,当1x3时,y不只是大于2故错误故选A【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当a2时,抛物线向上开口;当a2时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab2),对称轴在y轴左; 当a与b异号时(即ab2),对称轴在y轴右(简称:左同右异)常数项c决定抛物线与y轴交点,抛物线与y轴交于(2,c)8、D【解析】试题解析:要使分式有意义,则1

14、-x0,解得:x1故选D9、B【解析】由题意得,x-10且x-30,x1且x3.故选B.10、D【解析】试题分析:由分式有意义的条件得出x+10,解得x1故选D点睛:本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键二、填空题(共7小题,每小题3分,满分21分)11、20【解析】由正n边形的中心角为18,可得方程18n=360,解方程即可求得答案【详解】正n边形的中心角为18,18n=360,n=20.故答案为20.【点睛】本题考查的知识点是正多边形和圆,解题的关键是熟练的掌握正多边形和圆.12、【解析】分析:根据概率的求法,找准两点: 全部情况的总数;

15、 符合条件的情况数目;二者的比值就是其发生的概率详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为= 故答案为点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比13、【解析】根据被开方式是非负数列式求解即可.【详解】依题意,得,解得:,故答案为:【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:当函数解析式是整式时,字母可取全体实数;当函数解析式是分式时,考虑分式的分母不能为0;当函数解析式是二次根式时,被开方数为非负数对于实际问题中的函数关系式,自变量的取值

16、除必须使表达式有意义外,还要保证实际问题有意义14、.【解析】试题分析:连接CD,如图1所示,点E与点D关于AC对称,CE=CD,E=CDE,DFDE,EDF=90,E+F=90,CDE+CDF=90,F=CDF,CD=CF,CE=CD=CF,结论“CE=CF”正确;当CDAB时,如图2所示,AB是半圆的直径,ACB=90,AB=8,CBA=30,CAB=60,AC=4,BC=CDAB,CBA=30,CD=BC=根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为CE=CD=CF,EF=2CD线段EF的最小值为结论“线段EF的最小值为”错误;当AD=2时,连接OC,如图

17、3所示,OA=OC,CAB=60,OAC是等边三角形,CA=CO,ACO=60,AO=4,AD=2,DO=2,AD=DO,ACD=OCD=30,点E与点D关于AC对称,ECA=DCA,ECA=30,ECO=90,OCEF,EF经过半径OC的外端,且OCEF,EF与半圆相切,结论“EF与半圆相切”正确;当点F恰好落在上时,连接FB、AF,如图4所示,点E与点D关于AC对称,EDAC,AGD=90,AGD=ACB,EDBC,FHCFDE,FH:FD=FC:FE,FC=EF,FH=FD,FH=DH,DEBC,FHC=FDE=90,BF=BD,FBH=DBH=30,FBD=60,AB是半圆的直径,AF

18、B=90,FAB=30,FB=AB=4,DB=4,AD=ABDB=4,结论“AD=”错误;点D与点E关于AC对称,点D与点F关于BC对称,当点D从点A运动到点B时,点E的运动路径AM与AB关于AC对称,点F的运动路径NB与AB关于BC对称,EF扫过的图形就是图5中阴影部分,S阴影=2SABC=2ACBC=ACBC=4=,EF扫过的面积为,结论“EF扫过的面积为”正确故答案为考点:1圆的综合题;2等边三角形的判定与性质;3切线的判定;4相似三角形的判定与性质15、8【解析】主视图、俯视图是分别从物体正面、上面看,所得到的图形【详解】由俯视图可知:底层最少有5个小立方体,由主视图可知:第二层最少有

19、2个小立方体,第三层最少有1个小正方体,搭成这个几何体的小正方体的个数最少是5+2+1=8(个)故答案为:8【点睛】考查了由三视图判断几何体的知识,根据题目中要求的以最少的小正方体搭建这个几何体,可以想象出左视图的样子,然后根据“俯视图打地基,正视图疯狂盖,左视图拆违章”很容易就知道小正方体的个数16、-12【解析】过E点作EFOC于F,如图所示:由条件可知:OE=OA=5,所以EF=3,OF=4,则E点坐标为(-4,3)设反比例函数的解析式是y,则有k=-43=-12.故答案是:-12.17、1x1【解析】试题分析:由图象得:对称轴是x=1,其中一个点的坐标为(1,0)图象与x轴的另一个交点

20、坐标为(-1,0)利用图象可知:ax2+bx+c0的解集即是y0的解集,-1x1考点:二次函数与不等式(组)三、解答题(共7小题,满分69分)18、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CDE=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过

21、点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等),即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等

22、边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或219、(1)120件;(2)150元【解析】试题分析:(1)设该商家购进的第一批衬衫是x

23、件,则购进第二批这种衬衫可设为2x件,由已知可得,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.由题意可得:,解得,经检验是原方程的根.(2)设每件衬衫的标价至少是元.由(1)得第一批的进价为:(元/件),第二批的进价为:(元)由题意可得:解得:,所以,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.20、这栋高楼的高度是【解析】过A作ADBC,垂足为D,在直角ABD与直角ACD中,根据三角函数

24、的定义求得BD和CD,再根据BC=BD+CD即可求解【详解】过点A作ADBC于点D,依题意得,AD=120,在RtABD中,在RtADC中, ,答:这栋高楼的高度是.【点睛】本题主要考查了解直角三角形的应用-仰角俯角问题,难度适中对于一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算21、(1)y=x2+2x+1;(2)P ( ,);(1)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【解析】(1)先求得点B和点C的坐标,然后将点B和点C的坐标代入抛物线的解析式得到关于b、c的方程,从而可求得b、c的值;(2)作点O关于BC的对称点O,则O(1,1),

25、则OP+AP的最小值为AO的长,然后求得AO的解析式,最后可求得点P的坐标;(1)先求得点D的坐标,然后求得CD、BC、BD的长,依据勾股定理的逆定理证明BCD为直角三角形,然后分为AQCDCB和ACQDCB两种情况求解即可【详解】(1)把x=0代入y=x+1,得:y=1,C(0,1)把y=0代入y=x+1得:x=1,B(1,0),A(1,0).将C(0,1)、B(1,0)代入y=x2+bx+c得: ,解得b=2,c=1抛物线的解析式为y=x2+2x+1(2)如图所示:作点O关于BC的对称点O,则O(1,1)O与O关于BC对称,PO=POOP+AP=OP+APAOOP+AP的最小值=OA=2O

26、A的方程为y=P点满足解得:所以P ( ,)(1)y=x2+2x+1=(x1)2+4,D(1,4)又C(0,1,B(1,0),CD=,BC=1,DB=2CD2+CB2=BD2,DCB=90A(1,0),C(0,1),OA=1,CO=1又AOC=DCB=90,AOCDCB当Q的坐标为(0,0)时,AQCDCB如图所示:连接AC,过点C作CQAC,交x轴与点QACQ为直角三角形,COAQ,ACQAOC又AOCDCB,ACQDCB,即,解得:AQ=3Q(9,0)综上所述,当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与BCD相似【点睛】本题考查了二次函数的综合应用,解题的关键是掌握

27、待定系数法求二次函数的解析式、轴对称图形的性质、相似三角形的性质和判定,分类讨论的思想22、 (1)2000;(2)2米【解析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米; (2)设人行道的宽度为x米,根据题意得,(203x)(82x)=56 解得:x=2或x=(不合题意,舍去)答:人行道的宽为2米23、(1)C(2)n2(3)b735且b2【解析】(1)先求出B关于直线x=4的

28、对称点B的坐标,根据A、B的坐标可得直线AB的解析式,把x=4代入求出P点的纵坐标即可得答案;(2)如图:过点A作直线l的对称点A,连AB,交直线l于点P,作BHl于点H,根据对称性可知APG=APG,由AGP=BHP=90可证明AGPBHP,根据相似三角形对应边成比例可得m=2根据外角性质可知A=A=2根据对称性质可证明ABQ是等边三角形,即点Q为定点,若直线y=ax+b(a0)与圆相切,易得P、Q重合,所以直线y=ax+b(a0)过定点Q,连OQ,过点A、Q分别作AMy轴,QNy轴,垂足分别为M、N,可证明AMOONQ,根据相似三角形对应边成比例可得ON、NQ的长,即可得Q点坐标,根据A、B、Q的坐标可求出直线AQ、BQ的解析式,根据P与A、B重合时b的值求出b的取值范围即可.【详解】(1)点B关于直线x=4的对称点为B(10,3),直线AB解析式为:y=34当x=4时,y=32故答案为:C(2)如图,过点A作直线l的对称点A,连AB,交直线l于点P作BHl于点H点A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论