广东省深圳市锦华实验学校2021-2022学年中考二模数学试题含解析_第1页
广东省深圳市锦华实验学校2021-2022学年中考二模数学试题含解析_第2页
广东省深圳市锦华实验学校2021-2022学年中考二模数学试题含解析_第3页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1下列各数中是无理数的是( )Acos60BC半径为1cm的圆周长D2下列命题中,真命题是( )A对角线互相垂直且相等的四边形是正方形B等腰梯形既是轴对称图形又是中心对称图

2、形C圆的切线垂直于经过切点的半径D垂直于同一直线的两条直线互相垂直3下列运算正确的是()A(a2)4=a6Ba2a3=a6CD4直线AB、CD相交于点O,射线OM平分AOD,点P在射线OM上(点P与点O不重合),如果以点P为圆心的圆与直线AB相离,那么圆P与直线CD的位置关系是()A相离B相切C相交D不确定5轮船沿江从港顺流行驶到港,比从港返回港少用3小时,若船速为26千米/时,水速为2千米/时,求港和港相距多少千米. 设港和港相距千米. 根据题意,可列出的方程是( ).ABCD6如图,是一个工件的三视图,则此工件的全面积是()A60cm2B90cm2C96cm2D120cm27设0k2,关于

3、x的一次函数y=(k-2)x+2,当1x2时,y的最小值是()A2k-2 Bk-1 Ck Dk+18已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是( )ABCD9已知:如图,在平面直角坐标系xOy中,等边AOB的边长为6,点C在边OA上,点D在边AB上,且OC3BD,反比例函数y(k0)的图象恰好经过点C和点D,则k的值为()ABCD10计算结果是( )A0B1C1Dx二、填空题(本大题共6个小题,每小题3分,共18分)11如图,AB是半圆O的直径,E是半圆上一点,且OEAB,点C为的中点,则A=_.12如图,R

4、tABC纸片中,C=90,AC=6,BC=8,点D在边BC 上,以AD为折痕将ABD折叠得到ABD,AB与边BC交于点E若DEB为直角三角形,则BD的长是_13函数y=的自变量x的取值范围是_14在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_15计算a3a2a的结果等于_16下面是甲、乙两人10次射击成绩(环数)的条形统计图,通常新手的成绩不太确定,根据图中的信息,估计这两人中的新手是_三、解答题(共8题,共72分)17(8分)如图,已知在ABC中,AB=AC=5,co

5、sB=,P是边AB上一点,以P为圆心,PB为半径的P与边BC的另一个交点为D,联结PD、AD(1)求ABC的面积;(2)设PB=x,APD的面积为y,求y关于x的函数关系式,并写出定义域;(3)如果APD是直角三角形,求PB的长18(8分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)调查了_名学生;(2)补全条形统计图;(3)在扇形统计图中,“乒乓球”部分所对应的圆心角度数为_;(4)学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同

6、学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.19(8分)如图,ABC的顶点坐标分别为A(1,3)、B(4,1)、C(1,1)在图中以点O为位似中心在原点的另一侧画出ABC放大1倍后得到的A1B1C1,并写出A1的坐标;请在图中画出ABC绕点O逆时针旋转90后得到的A1B1C120(8分)如图:求作一点P,使,并且使点P到的两边的距离相等21(8分)已知抛物线yax2bx若此抛物线与直线yx只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1)求此抛物线的解析式;以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y,若这两条

7、抛物线有公共点,求n的取值范围;若a1,将此抛物线向上平移c个单位(c1),当xc时,y1;当1xc时,y1试比较ac与1的大小,并说明理由22(10分)观察与思考:阅读下列材料,并解决后面的问题在锐角ABC中,A、B、C的对边分别是a、b、c,过A作ADBC于D(如图(1)),则sinB=,sinC=,即ADcsinB,ADbsinC,于是csinBbsinC,即,同理有:,所以即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素根据上述材料,完成下列各题(1)如图(2),ABC中,B45,C75,B

8、C60,则A ;AC ;(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30的方向上,随后以40海里/时的速度按北偏东30的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75的方向上,求此时渔政204船距钓鱼岛A的距离AB(结果精确到0.01,2.449)23(12分)某校团委为研究该校学生的课余活动情况,采取抽样调查的方法,从阅读、运动、娱乐、其他等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图,请你根据图中提供的信息解答下列

9、各题:(1)在这次研究中,一共调查了多少名学生?(2)“其他”在扇形统计图中所占的圆心角是多少度?(3)补全频数分布直方图;(4)该校共有3200名学生,请你估计一下全校大约有多少学生课余爱好是阅读24某校为了开阔学生的视野,积极组织学生参加课外读书活动“放飞梦想”读书小组协助老师随机抽取本校的部分学生,调查他们最喜爱的图书类别(图书分为文学类、艺体类、科普类、其他等四类),并将调查结果绘制成如下两幅不完整的统计图,请你结合图中的信息解答下列问题:求被调查的学生人数;补全条形统计图;已知该校有1200名学生,估计全校最喜爱文学类图书的学生有多少人?参考答案一、选择题(共10小题,每小题3分,共

10、30分)1、C【解析】分析:根据“无理数”的定义进行判断即可.详解:A选项中,因为,所以A选项中的数是有理数,不能选A;B选项中,因为是无限循环小数,属于有理数,所以不能选B;C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;D选项中,因为,2是有理数,所以不能选D.故选.C.点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.2、C【解析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案解答:解:A、错误,例如对角线互相垂直的等腰梯形;B、错误,等腰梯形是轴对称图形不是中心对称图形;C、正确,符合切线的性质;D、错误,垂直于

11、同一直线的两条直线平行故选C3、C【解析】根据幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法计算即可.【详解】A、原式=a8,所以A选项错误;B、原式=a5,所以B选项错误;C、原式= ,所以C选项正确;D、与不能合并,所以D选项错误故选:C【点睛】本题考查了幂的乘方、同底数幂的乘法、二次根式的乘法、二次根式的加法,熟练掌握它们的运算法则是解答本题的关键.4、A【解析】根据角平分线的性质和点与直线的位置关系解答即可【详解】解:如图所示;OM平分AOD,以点P为圆心的圆与直线AB相离,以点P为圆心的圆与直线CD相离,故选:A【点睛】此题考查直线与圆的位置关系,关键是根据角平分线的性质解

12、答5、A【解析】通过题意先计算顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26-2=24千米/时根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系,据此列出方程即可【详解】解:设A港和B港相距x千米,可得方程:故选:A【点睛】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键顺水速度=水流速度+静水速度,逆水速度=静水速度-水流速度6、C【解析】先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的

13、侧面积和底面积的和即可.【详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长=10,所以此工件的全面积=62+2610=96(cm2).故答案选C.【点睛】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.7、A【解析】先根据0k1判断出k-1的符号,进而判断出函数的增减性,根据1x1即可得出结论【详解】0k1,k-10,此函数是减函数,1x1,当x=1时,y最小=1(k-1)+1=1k-1故选A【点睛】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k0)中,当k0,b0时函数图象经过一、二、四象限是解答此题的关键8、

14、B【解析】分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.详解: 抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,b0,交点横坐标为1,a+b+c=b,a+c=0,ac0,一次函数y=bx+ac的图象经过第一、三、四象限故选B.点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b0,ac0.9、A【解析】试题分析:过点C作CEx轴于点E,过点D作DFx轴于点F,如图所示设BD=a,则OC=3aAOB为边

15、长为1的等边三角形,COE=DBF=10,OB=1在RtCOE中,COE=10,CEO=90,OC=3a,OCE=30,OE=a,CE= = a,点C(a, a)同理,可求出点D的坐标为(1a,a)反比例函数(k0)的图象恰好经过点C和点D,k=aa=(1a)a,a=,k=故选A10、C【解析】试题解析:.故选C.考点:分式的加减法.二、填空题(本大题共6个小题,每小题3分,共18分)11、22.5【解析】连接半径OC,先根据点C为的中点,得BOC=45,再由同圆的半径相等和等腰三角形的性质得:A=ACO=45,可得结论【详解】连接OC,OEAB,EOB=90,点C为的中点,BOC=45,OA

16、=OC,A=ACO=45=22.5,故答案为:22.5【点睛】本题考查了圆周角定理与等腰三角形的性质解题的关键是注意掌握数形结合思想的应用12、5或1【解析】先依据勾股定理求得AB的长,然后由翻折的性质可知:AB=5,DB=DB,接下来分为BDE=90和BED=90,两种情况画出图形,设DB=DB=x,然后依据勾股定理列出关于x的方程求解即可【详解】RtABC纸片中,C=90,AC=6,BC=8,AB=5,以AD为折痕ABD折叠得到ABD,BD=DB,AB=AB=5如图1所示:当BDE=90时,过点B作BFAF,垂足为F设BD=DB=x,则AF=6+x,FB=8-x在RtAFB中,由勾股定理得

17、:AB5=AF5+FB5,即(6+x)5+(8-x)5=55解得:x1=5,x5=0(舍去)BD=5如图5所示:当BED=90时,C与点E重合AB=5,AC=6,BE=5设BD=DB=x,则CD=8-x在RtBDE中,DB5=DE5+BE5,即x5=(8-x)5+55解得:x=1BD=1综上所述,BD的长为5或113、x且x1【解析】分析:根据被开方数大于等于0,分母不等于0列式求解即可详解:根据题意得2x+10,x-10,解得x-且x1故答案为x-且x1点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单14、20【解析】利用频

18、率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有=,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.15、a1【解析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可【详解】解:原式=a31+1=a1故答案为a1【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则16、甲【解析】根据方差的意义可作出判断方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中

19、,各数据偏离平均数越小,即波动越小,数据越稳定,方差越大,数据不稳定,则为新手.【详解】通过观察条形统计图可知:乙的成绩更整齐,也相对更稳定,甲的方差大于乙的方差.故答案为:甲.【点睛】本题考查的知识点是方差,条形统计图,解题的关键是熟练的掌握方差,条形统计图.三、解答题(共8题,共72分)17、(1)12(2)y=(0 x5)(3)或【解析】试题分析:(1)过点A作AHBC于点H ,根据cosB=求得BH的长,从而根据已知可求得AH的长,BC的长,再利用三角形的面积公式即可得;(2)先证明BPDBAC,得到=,再根据 ,代入相关的量即可得;(3)分情况进行讨论即可得.试题解析:(1)过点A作

20、AHBC于点H ,则AHB=90,cosB= ,cosB=,AB=5,BH=4,AH=3,AB=AC,BC=2BH=8,SABC=83=12(2)PB=PD,B=PDB,AB=AC,B=C,C=PDB,BPDBAC, ,即,解得=, , ,解得y=(0 x5); (3)APD90,过C作CEAB交BA延长线于E,可得cosCAE= ,当ADP=90时,cosAPD=cosCAE=,即 ,解得x=; 当PAD=90时, ,解得x=,综上所述,PB=或.【点睛】本题考查了相似三角形的判定与性质、底在同一直线上且高相等的三角形面积的关系等,结合图形及已知选择恰当的知识进行解答是关键.18、50 见解

21、析(3)115.2 (4) 【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=1530%=50(名)故答案为50;(2)足球项目所占的人数=5018%=9(名),所以其它项目所占人数=5015916=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360=1

22、15.2,故答案为115.2;(4)画树状图如图由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)=点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.19、(1)A(1,6);(1)见解析【解析】试题分析:(1)把每个坐标做大1倍,并去相反数.(1)横纵坐标对调,并且把横坐标取相反数.试题解析:解:(1)如图,A1B1C1为所作,A(1,6);(1)如图,A1B1C1为所作20、见解析【解析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点

23、即可【详解】如图所示:P点即为所求【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键21、(1);n1;(2)ac1,见解析.【解析】(1)1求解b1,将点(3,1)代入平移后解析式,即可;顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入yax2bx+c得到acb+11,bac+1,当1xc时,y1. c,b2ac,ac+12ac,ac1;【详解】解:(1)ax2bxx,ax2(b+1)x1,(b+1)21,b1,平移后的抛物线ya(x1)

24、2b(x1)过点(3,1),4a2b1,a,b1,原抛物线:yx2+x,其顶点为(1,)关于P(1,n)对称点的坐标是(1,2n),关于点P中心对称的新抛物线y(x+1)2+2nx2+x+2n由得:x2+2n1有解,所以n1(2)由题知:a1,将此抛物线yax2bx向上平移c个单位(c1),其解析式为:yax2bx+c过点(c,1),ac2bc+c1 (c1),acb+11,bac+1,且当x1时,yc,对称轴:x,抛物线开口向上,画草图如右所示由题知,当1xc时,y1c,b2ac,ac+12ac,ac1;【点睛】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a的值不变是解题的关键22、(1)60,20;(2)渔政船距海岛A的距离AB约为24.49海里【解析】(1)利用题目总结的正弦定理,将有关数据代入求解即可;(2)在ABC中,分别求得BC的长和三个内角的度数,利用题目中总结的正弦定理求AC的长即可【详解】(1)由正玄定理得:A60,AC20;故答案为60,20;(2)如图:依题意,得BC400.520(海里)CDBE,DCBCBE180.DCB30,CBE150.ABE75,ABC75,A45.在ABC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论