版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1如图所示的图形为四位同学画的数轴,其中正确的是( )ABCD2九章算术中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的
2、钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x,乙的钱数为y,则列方程组为()ABCD3在RtABC中,C=90,AC=1,BC=3,则A的正切值为()A3BCD4将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30角的直角三角板的斜边与纸条一边重合,含45角的三角板的一个顶点在纸条的另一边上,则1的度数是()A15B22.5C30D455一个多边形的每一个外角都等于72,这个多边形是( )A正三角形B正方形C正五边形D正六边形6如图,ABC 中,AD 是中线,BC=8,B=DAC,则线段 AC 的长为( )A4B4
3、C6D47如图,正方形ABCD的顶点C在正方形AEFG的边AE上,AB2,AE,则点G 到BE的距离是( )ABCD8某自行车厂准备生产共享单车4000辆,在生产完1600辆后,采用了新技术,使得工作效率比原来提高了20%,结果共用了18天完成任务,若设原来每天生产自行车x辆,则根据题意可列方程为( )A+18B18C+18D189如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A1=3B2+4=180C1=4D3=410如图,在ABC中,CDAB于点D,E,F分别为AC,BC的中点,AB=10,BC=8,DE=4.5,则DEF的周长是()A9.5B13.5C14.5D17
4、11一次函数与的图象如图所示,给出下列结论:;当时,.其中正确的有( )A0个B1个C2个D3个12在数轴上表示不等式2(1x)4的解集,正确的是()ABCD二、填空题:(本大题共6个小题,每小题4分,共24分)132017年12月31日晚,郑东新区如意湖文化广场举行了“文化跨年夜、出彩郑州人”的跨年庆祝活动,大学生小明和小刚都各自前往观看了演出,而且他们两人前往时选择了以下三种交通工具中的一种:共享单车、公交、地铁,则他们两人选择同一种交通工具前往观看演出的概率为_14在数轴上与表示11的点距离最近的整数点所表示的数为_15有一组数据:3,5,5,6,7,这组数据的众数为_16地球上的海洋面
5、积约为361000000km1,则科学记数法可表示为_km117若 m、n 是方程 x2+2018x1=0 的两个根,则 m2n+mn2mn=_18若a2+32b,则a32ab+3a_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)4100米拉力赛是学校运动会最精彩的项目之一图中的实线和虚线分别是初三一班和初三二班代表队在比赛时运动员所跑的路程y(米)与所用时间x(秒)的函数图象(假设每名运动员跑步速度不变,交接棒时间忽略不计)问题:(1)初三二班跑得最快的是第 接力棒的运动员;(2)发令后经过多长时间两班运动员第一次并列?20(6分)4件同型号的产
6、品中,有1件不合格品和3件合格品从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?21(6分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次
7、运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?22(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(m,n)(m0,n0),E点在边BC上,F点在边OA上将矩形OABC沿EF折叠,点B正好与点O重合,双曲线y=k(1) 若m8,n 4,直接写出E、F的坐标;(2) 若直线EF的解析式为y=3(3) 若双曲线y=k23(8分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查根据调查数据绘制了如下所示不完整统计图条形统计图中七年级、八年级、九
8、年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?24(10分)计算:|1|2sin45+25(10分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示(1)求甲组加工零件的数量y与时间x之间的函数关系式(2)求乙组加工零件总量a的值26(12分)如图,已知AB是O的直径,点C、D在O上,点E在O外,EAC=D=60求
9、ABC的度数;求证:AE是O的切线;当BC=4时,求劣弧AC的长27(12分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,当顶点C恰好落在y轴上的点D处时,点B落在点E处(1)求这个抛物线的解析式;(2)求平移过程中线段BC所扫过的面积;(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标 参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据数轴三要素:原点、正方向、单位长度
10、进行判断.【详解】A选项图中无原点,故错误;B选项图中单位长度不统一,故错误;C选项图中无正方向,故错误;D选项图形包含数轴三要素,故正确;故选D.【点睛】本题考查数轴的画法,熟记数轴三要素是解题的关键.2、A【解析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:故选A【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键3、A【解析】【分析】根据锐角三角函数的定义求出即可【详解】在Rt
11、ABC中,C=90,AC=1,BC=3,A的正切值为=3,故选A【点睛】本题考查了锐角三角函数的定义,能熟记锐角三角函数的定义的内容是解此题的关键4、A【解析】试题分析:如图,过A点作ABa,1=2,ab,ABb,3=4=30,而2+3=45,2=15,1=15故选A考点:平行线的性质5、C【解析】任何多边形的外角和是360,用360除以一个外角度数即可求得多边形的边数【详解】36072=1,则多边形的边数是1故选C【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容6、B【解析】由已知条件可得,可得出,可求出AC的长【详解】解:由题意得:B=DAC,ACB=AC
12、D,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,故选B.【点睛】本题主要考查相似三角形的判定与性质灵活运用相似的性质可得出解答7、A【解析】根据平行线的判定,可得AB与GE的关系,根据平行线间的距离相等,可得BEG与AEG的关系,根据根据勾股定理,可得AH与BE的关系,再根据勾股定理,可得BE的长,根据三角形的面积公式,可得G到BE的距离【详解】连接GB、GE,由已知可知BAE=45又GE为正方形AEFG的对角线,AEG=45ABGEAE=4,AB与GE间的距离相等,GE=8,SBEGSAEGSAEFG1过点B作BHAE于点H,AB=2,BH
13、AHHE3BE2设点G到BE的距离为hSBEGBEh2h1h即点G到BE的距离为故选A【点睛】本题主要考查了几何变换综合题涉及正方形的性质,全等三角形的判定及性质,等积式及四点共圆周的知识,综合性强解题的关键是运用等积式及四点共圆的判定及性质求解8、B【解析】根据前后的时间和是18天,可以列出方程.【详解】若设原来每天生产自行车x辆,根据前后的时间和是18天,可以列出方程.故选B【点睛】本题考核知识点:分式方程的应用. 解题关键点:根据时间关系,列出分式方程.9、D【解析】试题分析:A1=3,ab,故A正确;B2+4=180,2+1=180,1=4,4=3,1=3,ab,故B正确;C 1=4,
14、4=3,1=3,ab,故C正确;D3和4是对顶角,不能判断a与b是否平行,故D错误故选D考点:平行线的判定10、B【解析】由三角形中位线定理和直角三角形斜边上的中线等于斜边的一半解答【详解】在ABC中,CDAB于点D,E,F分别为AC,BC的中点,DE=AC=4.1,DF=BC=4,EF=AB=1,DEF的周长=(AB+BC+AC)=(10+8+9)=13.1故选B【点睛】考查了三角形中位线定理和直角三角形斜边上的中线,三角形的中位线平行于第三边,且等于第三边的一半11、B【解析】仔细观察图象,k的正负看函数图象从左向右成何趋势即可;a,b看y2=x+a,y1=kx+b与y轴的交点坐标;看两函
15、数图象的交点横坐标;以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大【详解】y1=kx+b的图象从左向右呈下降趋势,k0正确;y2=x+a,与y轴的交点在负半轴上,a0,故错误;当xy2错误;故正确的判断是故选B【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k0)y随x的变化趋势:当k0时,y随x的增大而增大;当k0时,y随x的增大而减小.12、A【解析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得不等式解集,然后得出在数轴上表示不等式的解集 2(1 x)4去括号得:224移项得:2x2,系数化为1得:x1,故选A “
16、点睛”本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变二、填空题:(本大题共6个小题,每小题4分,共24分)13、【解析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果,最后用概率公式求解即可求得答案【详解】树状图如图所示,一共有9种等可能的结果;根据树状图知,两人选择同一种交通工具前往观看演出的有3种情况,选择同一种交通工具前往观看演出的概率:,故答案为【点睛】此题考查了树状图法求概率注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=
17、所求情况数与总情况数之比14、3【解析】113.317,且11在3和4之间,3.317-3=0.317,4-3.317=0.683,且0.6830.317,11距离整数点3最近15、1【解析】根据众数的概念进行求解即可得.【详解】在数据3,1,1,6,7中1出现次数最多,所以这组数据的众数为1,故答案为:1【点睛】本题考查了众数的概念,熟知一组数据中出现次数最多的数据叫做众数是解题的关键16、3.612【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的
18、绝对值1时,n是负数【详解】将361 000 000用科学记数法表示为3.612故答案为3.61217、1【解析】根据根与系数的关系得到 m+n=2018,mn=1,把 m2n+mm2mn分解因式得到 mn(m+n1),然后利用整体代入的方法计算【详解】解:m、n 是方程 x2+2018x1=0 的两个根,m+n=-2018,=1(20181)=1(1)=1,故答案为:1【点睛】本题考查了根与系数的关系,如果一元二次方程 ax2+bx+c=0 的两根分别为x1与x2,则18、1【解析】利用提公因式法将多项式分解为a(a2+3)-2ab,将a2+3=2b代入可求出其值【详解】解:a2+3=2b,
19、a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案为1【点睛】本题考查了因式分解的应用,利用提公因式法将多项式分解是本题的关键三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、 (1)1;(2)发令后第37秒两班运动员在275米处第一次并列【解析】(1)直接根据图象上点横坐标可知道最快的是第1接力棒的运动员用了12秒跑完100米;(2)分别利用待定系数法把图象相交的部分,一班,二班的直线解析式求出来后,联立成方程组求交点坐标即可【详解】(1)从函数图象上可看出初三二班跑得最快的是第1接力棒的运动员用了12秒跑完100米;(2)设在图象相交
20、的部分,设一班的直线为y1kx+b,把点(28,200),(40,300)代入得:解得:k,b,即y1x,二班的为y2kx+b,把点(25,200),(41,300),代入得:解得:k,b,即y2x+联立方程组,解得:,所以发令后第37秒两班运动员在275米处第一次并列【点睛】本题考查了利用一次函数的模型解决实际问题的能力和读图能力要先根据题意列出函数关系式,再代数求值解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解,并会根据图示得出所需要的信息要掌握利用函数解析式联立成方程组求交点坐标的方法20、(1);(2);(3)x=1【解析】(1)用不合格品的数量除以总量即可求得
21、抽到不合格品的概率;(2)利用独立事件同时发生的概率等于两个独立事件单独发生的概率的积即可计算;(3)根据频率估计出概率,利用概率公式列式计算即可求得x的值.【详解】解:(1)4件同型号的产品中,有1件不合格品,P(不合格品)=;(2)共有12种情况,抽到的都是合格品的情况有6种,P(抽到的都是合格品)=;(3)大量重复试验后发现,抽到合格品的频率稳定在0.95,抽到合格品的概率等于0.95, =0.95,解得:x=1【点睛】本题考查利用频率估计概率;概率公式;列表法与树状图法21、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省
22、费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可【详解】(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得: ,解得: .答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.(2)解:设大货车有m辆,则小货车10-m辆,依题可得:4m+(10-m)33m010-m0解得:m10,m=8,9,10;当大
23、货车8辆时,则小货车2辆;当大货车9辆时,则小货车1辆;当大货车10辆时,则小货车0辆;设运费为W=130m+100(10-m)=30m+1000,k=300,W随x的增大而增大,当m=8时,运费最少,W=1308+1002=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案22、(1)E(3,4)、F(5,0)
24、;(2)-334【解析】(1) 连接OE,BF,根据题意可知:BC=OA=8,BA=OC=4,设EC=x,则BE=OE=8-x,根据勾股定理可得:OC2+CE2(2) 连接BF、OE,连接BO交EF于G由翻折可知:GOGB,BEOE,证明BGEOGF,证明四边形OEBF为菱形,令y0,则3x+3=0,解得x=-3 , 根据菱形的性质得OF=OE=BE=BF=3令yn,则3x+3=n,解得x=n-33(3) 设EB=EO=x,则CE=mx,在RtCOE中,根据勾股定理得到(mx)2n2x2,解得x=-m2+n22m,求出点E(m2-n22m,n)、F(即可求出tanEFO-m【详解】解:(1)如
25、图:连接OE,BF,E(3,4)、F(5,0)(2) 连接BF、OE,连接BO交EF于G由翻折可知:GOGB,BEOE可证:BGEOGF(ASA)BEOF 四边形OEBF为菱形令y0,则3x+3=0,解得x=-3令yn,则3x+3=n,解得x=n-3在RtCOE中,(-n-3解得n=3 E(-3k=-(3) 设EB=EO=x,则CE=mx,在RtCOE中,(mx)2n2x2,解得x=-E(m2-nEF的中点为(m2将E(m2-n22mn(m2-ntanEFO-【点睛】考查矩形的折叠与性质,勾股定理,一次函数的图象与性质,待定系数法求反比例函数解析式,锐角三角函数等,综合性比较强,难度较大.23
26、、(1)作图见解析;(2)1【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=2040%=50人,八年级被抽到的志愿者:5030%=15人九年级被抽到的志愿者:5020%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有60020%=1人答:该校九年级大约有1名志愿者24、1【解析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案【详解】原式=(1)2+24=1+24=1【点睛】此题主要考查了实数运算,正确化简各
27、数是解题关键25、(1)y=60 x;(2)300【解析】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y与时间x之间的关系式为y=60 x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍.所以,解得a=300.26、(1)60;(2)证明略;(3)【解析】(1)根据ABC与D都是劣弧AC所对的圆周角,利用圆周角定理可证出ABC=D=60;(2)根据AB是O的直径,利用直径所对的圆周角是直角得到ACB=90,结合ABC=60求得BAC=30,从而推出BAE=90,即OAAE,可得AE是O的切线;(3)连结OC,证出OBC是等边三角形,算出BOC=60且O的半径等于4,可得劣弧AC所对的圆心角AOC=120,再由弧长公式加以计算,可得劣弧AC的长【详解】(1)ABC与D都是弧AC所对的圆周角,ABC=D=60; (2)AB是O的直径,ACB=90BAC=30,BAE=BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年车位产权买卖协议格式
- 2024年防水施工劳务协议规范化文件
- 2024新疆企业劳动协议规范化样本
- 2024受托代理事务协议样本
- 2024年专业运营车辆租赁协议模板
- DB11∕T 1514-2018 低效果园改造技术规范
- 单位广告策划与制作服务协议范例
- 2024年公司文秘职务聘用协议模板
- 2024年企业员工全日制劳动协议模板
- 文书模板-《厂房光伏租赁合同》
- 中医护理发展史课件(PPT 35页)
- 色彩的基础知识课件.PPT
- 动火作业及动火工作票管理规定
- 桥梁伸缩缝施工及质量保证要点
- 留守儿童一生一档联系卡
- 黑洞白洞和虫洞优质PPT课件
- 城镇5000吨日供水工程可行性研究报告(含图纸)
- 湿法炼锌的浸出过程
- 新生儿液体疗法PPT课件.ppt
- 个国际音标对应的字母组合new
- 一年级数学上册期中试卷精品
评论
0/150
提交评论