2023学年山东省滨州市集团学校九年级数学第一学期期末教学质量检测试题含解析_第1页
2023学年山东省滨州市集团学校九年级数学第一学期期末教学质量检测试题含解析_第2页
2023学年山东省滨州市集团学校九年级数学第一学期期末教学质量检测试题含解析_第3页
2023学年山东省滨州市集团学校九年级数学第一学期期末教学质量检测试题含解析_第4页
2023学年山东省滨州市集团学校九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如图,O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,函数y=(k0)的图象经过点B,则k的值为()A12B32C32D362已知圆内接四边形ABCD中,A:B:C=1:2:3,则D的大小是( )A45B60C90D1353

2、式子有意义的的取值范围( )Ax 4Bx2Cx0且x4Dx0且x24将抛物线向左平移2个单位后,得到的抛物线的解析式是( )ABCD5在平面直角坐标系中,ABC与A1B1C1位似,位似中心是原点O,若ABC与A1B1C1的相似比为1:2,且点A的坐标是(1,3),则它的对应点A1的坐标是( )A(-3,-1)B(-2,-6)C(2,6)或(-2,-6)D(-1,-3)6如图,平面直角坐标系中,P经过三点A(8,0),O(0,0),B(0,6),点D是P上的一动点当点D到弦OB的距离最大时,tanBOD的值是()A2B3C4D57设a,b是方程的两个实数根,则的值为A2014B2015C2016

3、D20178小华同学某体育项目7次测试成绩如下(单位:分):9,7,1,8,1,9,1这组数据的中位数和众数分别为( )A8,1B1,9C8,9D9,19某次数学纠错比赛共有道题目,每道题都答对得分,答错或不答得分,全班名同学参加了此次竞赛,他们的得分情况如下表所示:成绩(分)人数则全班名同学的成绩的中位数和众数分别是( )A,B,C,70D,10下列函数中,是反比例函数的是( )ABCD11二次函数y=x2+4x+3的图象可以由二次函数y=x2的图象平移而得到,下列平移正确的是()A先向左平移2个单位,再先向上平移1个单位B先向左平移2个单位,再先向下平移1个单位C先向右平移2个单位,再先向

4、上平移1个单位D先向右平移2个单位,再先向下平移1个单位12如图,平行四边形ABCD的对角线AC与BD相交于点O,设,下列式子中正确的是( )AB;CD二、填空题(每题4分,共24分)13如图,小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会(只填序号)_越来越长,越来越短,长度不变在D处发现自己在地面上的影子长DE是2米,如果小明的身高为1.7米,那么路灯离地面的高度AB是_米14如图,四边形的项点都在坐标轴上,若与面积分别为和,若双曲线恰好经过的中点,则的值为_15如图,AB是O的直径,CD是O的弦,DCB32则ABD_16如图,已知正方形ABCD的边长为1,点M是BC边上

5、的动点(不与B,C重合),点N是AM的中点,过点N作EFAM,分别交AB,BD,CD于点E,K,F,设BMx(1)AE的长为_(用含x的代数式表示);(2)设EK2KF,则的值为_17一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_个18如图:A、B、C两两不相交,且半径均为1,则图中三个阴影扇形的面积之和为 .三、解答题(共78分)19(8分)如图,四边形ABCD内接于O,点E在CB的延长线上,BA平分EBD,AEAB(1)求证:ACAD(2)当,

6、AD6时,求CD的长20(8分)在平面直角坐标系中,点为坐标原点,一次函数的图象与反比例函数的图象交于两点,若,点的横坐标为-2.(1)求反比例函数及一次函数的解析式;(2)若一次函数的图象交轴于点,过点作轴的垂线交反比例函数图象于点,连接,求的面积.21(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.22(1

7、0分)如图,是的直径,是的中点,弦于点,过点作交的延长线于点(1)连接,求;(2)点在上,DF交于点若,求的长23(10分)如图,在平面直角坐标系中,ABC的三个顶点都在格点上(每个小方格都是边长为一个单位长度的正方形)(1)请画出ABC关于原点对称的A1B1C1;(1)请画出ABC绕点B逆时针旋转90后的A1B1C124(10分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表组别分数段频次频率A60 x70170.17B70 x8030aC80 x90b0.45

8、D90 x10080.08请根据所给信息,解答以下问题:(1)表中a=_,b=_;(2)请计算扇形统计图中B组对应扇形的圆心角的度数;(3)已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率25(12分)某学校开展了主题为“垃圾分类,绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图请根据图表信息,解答下列问题:

9、本次调查随机抽取了_ 名学生:表中 ; 补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀和“良好”等级的学生共有多少人26如图,已知O的半径长为R=5,弦AB 与弦CD平行,它们之间距离为5,AB=6,求弦CD的长参考答案一、选择题(每题4分,共48分)1、B【解析】解:O是坐标原点,菱形OABC的顶点A的坐标为(3,4),顶点C在x轴的正半轴上,OA=5,ABOC,点B的坐标为(8,4),函数y=(k0)的图象经过点B,4=,得k=32.故选B.【点睛】本题主要考查菱形的性质和用待定系数法求反函数的系数,解此题的关键在于根据A点坐标求得OA的长,再根据菱形的性质求得B点

10、坐标,然后用待定系数法求得反函数的系数即可.2、C【分析】根据圆内接四边形对角互补,结合已知条件可得A:B:C:D=1:2:3:2,B+D=180,由此即可求得D的度数.【详解】四边形ABCD为圆的内接四边形,A:B:C=1:2:3,A:B:C:D=1:2:3:2,而B+D=180,D=180=90故选C【点睛】本题考查了圆内接四边形的性质,熟练运用圆内接四边形对角互补的性质是解决问题的关键.3、C【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解【详解】解:根据题意得:且,解得:且故选:C【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数

11、是非负数本题应注意在求得取值后应排除不在取值范围内的值4、A【详解】解:抛物线向左平移2个单位后的顶点坐标为(2,0),所得抛物线的解析式为故选A【点睛】本题考查二次函数图象与几何变换,利用数形结合思想解题是关键5、C【解析】根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或,即可求出答案.【详解】由位似变换中对应点坐标的变化规律得:点的对应点的坐标是或,即点的坐标是或故选:C.【点睛】本题考查了位似变换中对应点坐标的变化规律,理解位似的概念,并熟记变化规律是解题关键.6、B【解析】如图,连接AB,过点P作PEBO,并延长EP交P于点D,求出P的半径,进而结合

12、勾股定理得出答案【详解】解:如图,连接AB,过点P作PEBO,并延长EP交P于点D,此时点D到弦OB的距离最大,A(8,0),B(0,6),AO=8,BO=6,BOA=90,AB=10,则P的半径为5,PEBO,BE=EO=3,PE=4,ED=9,tanBOD=3,故选B【点睛】本题考查了圆周角定理以及勾股定理、解直角三角形等知识,正确作出辅助线是解题关键7、C【详解】解:a,b是方程x2+x2017=0的两个实数根,a+b=1,a2+a2017=0,a2=a+2017,a2+2a+b=a+2017+2a+b=2017+a+b=20171=1故选C【点睛】本题考查了根与系数的关系:若x1,x2

13、是一元二次方程ax2+bx+c=0(a0)的两根,则,也考查了一元二次方程的解8、D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,1,1,1,最中间的数是9,则中位数是9;1出现了3次,出现的次数最多,则众数是1;故选D考点:众数;中位数9、A【分析】根据中位数的定义把这组数据从小到大排列,求出最中间2个数的平均数;根据众数的定义找出出现次数最多的数即可【详解】把这组数据从小到大排列,最中间2个数的平均数是(70+80)2=75;则中位数是75;70出现了13次,出现的次数最多,则众数是70;故选:A【点睛】本题考查了众数和中位数,中位数是将一组数据从小到大(或从大到小)重新排列后

14、,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数,注意众数不止一个10、B【解析】根据反比例函数的一般形式即可判断【详解】A、不符合反比例函数的一般形式y,(k0)的形式,选项错误;B、是一次函数,正确;C、不符合反比例函数的一般形式y,(k0)的形式,选项错误;D、不符合反比例函数的一般形式y,(k0)的形式,选项错误故选:B【点睛】本题考查了反比例函数的定义,重点是将一般式y(k0)转化为ykx1(k0)的形式11、B【解析】试题分析:因为函数y=x2的图象沿y轴向下平移1个单位长度,所以根据左加右减,上加下减的规律,直接在函数上加1可得新

15、函数y=x21;然后再沿x轴向左平移2个单位长度,可得新函数y=(x+2)21解:函数y=x2的图象沿沿x轴向左平移2个单位长度,得,y=(x+2)2;然后y轴向下平移1个单位长度,得,y=(x+2)21;故可以得到函数y=(x+2)21的图象故选B考点:二次函数图象与几何变换12、C【分析】由平行四边形性质,得,由三角形法则,得到,代入计算即可得到答案.【详解】解:四边形ABCD是平行四边形,在OAB中,有,;故选择:C.【点睛】此题考查了平面向量的知识以及平行四边形的性质注意掌握平行四边形法则与三角形法则的应用是解此题的关键二、填空题(每题4分,共24分)13、;5.95.【解析】试题解析

16、:小明从路灯下A处,向前走了5米到达D处,行走过程中,他的影子将会越来越长;CDAB,ECDEBA,即,AB=5.95(m)考点:中心投影14、6【分析】根据AB/CD,得出AOB与OCD相似,利用AOB与OCD的面积分别为8和18,得:AO:OC=BO:OD=2:3,然后再利用同高三角形求得SCOB=12,设B、 C的坐标分别为(a,0)、(0,b),E点坐标为(a,b)进行解答即可.【详解】解:AB/CD,AOBOCD,又ABD与ACD的面积分别为8和18,ABD与ACD的面积比为4:9,AO:OC=BO:OD=2:3SAOB=8SCOB=12设B、 C的坐标分别为(a,0)、(0,b),

17、E点坐标为(a,b)则OB=| a | 、OC=| b |a|b|=12即|a|b|=24|a|b|=6又,点E在第三象限k=xy=ab=6故答案为6.【点睛】本题考查了反比例函数综合题应用,根据已知求出SCOB=12是解答本题的关键.15、58【解析】根据圆周角定理得到BAD=BCD=32,ADB=90,根据互余的概念计算即可【详解】由圆周角定理得,BAD=BCD=32,AB为O的直径, 故答案为【点睛】考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等.16、 x 【分析】(1)根据勾股定理求得AM,进而得出AN,证得AENAMB,由相似三角形的性质即可求得AE的长;(2)连接AK

18、、MG、CK,构建全等三角形和直角三角形,证明AKMKCK,再根据四边形的内角和定理得AKM90,利用直角三角形斜边上的中线等于斜边的一半得NKAMAN,然后根据相似三角形的性质求得x,即可得出x【详解】(1)解:正方形ABCD的边长为1,BMx,AM,点N是AM的中点,AN,EFAM,ANE90,ANEABM90,EANMAB,AENAMB,即,AE,故答案为:;(2)解:如图,连接AK、MG、CK,由正方形的轴对称性ABKCBK,AKCK,KABKCB,EFAM,N为AM中点,AKMK,MKCK,KMCKCM,KABKMC,KMB+KMC180,KMB+KAB180,又四边形ABMK的内角

19、和为360,ABM90,AKM90,在RtAKM中,AM为斜边,N为AM的中点,KNAMAN,AENAMB,x,x,故答案为:x【点睛】本题是四边形的综合题,考查了正方形的性质,相似三角形的判定和性质,全等三角形判定和性质,等腰三角形的性质,以及直角三角形斜边.上的中线的性质,证得KN=AN是解题的关键17、8【解析】试题分析:设红球有x个,根据概率公式可得,解得:x8.考点:概率.18、【解析】试题分析:根据三角形的内角和是180和扇形的面积公式进行计算试题解析:A+B+C=180,阴影部分的面积=考点:扇形面积的计算三、解答题(共78分)19、(1)证明见解析;(2)CD=1【分析】(1)

20、利用BA平分EBD得到ABEABD,再根据圆周角定理得到ABEADC,ABDACD,利用等量代换得到ACDADC,从而得到结论;(2)根据等腰三角形的性质得到EABE,则可证明ABEACD,然后根据相似比求出CD的长【详解】(1)证明:BA平分EBD,ABEABD,ABEADC,ABDACD,ACDADC,ACAD;(2)解:AEAB,EABE,EABEACDADC,ABEACD,CDAD61【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相

21、似三角形的性质表示线段之间的关系;也考查了圆周角定理20、(1),;(2)3【分析】(1)点代入,并且求出点坐标,将代入(2)【详解】解:(1) (2)21、(1)12m或16m;(2)195.【分析】(1)、根据AB=x可得BC=28x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.【详解】(1)、AB=xm,则BC=(28x)m, x(28x)=192,解得:x1=12,x2=16, 答:x的值为12m或16m(2)、AB=xm, BC=28x, S=x(28x)=x2+28x=(x14)2+19

22、6,在P处有一棵树与墙CD,AD的距离分别是16m和6m,28-x15,x6 6x13,当x=13时,S取到最大值为:S=(1314)2+196=195,答:花园面积S的最大值为195平方米【点睛】题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键22、(1);(2)【解析】(1)根据垂径定理可得AB垂直平分CD,再根据M是OA的中点及圆的性质,得出OAD是等边三角形即可;(2)根据题意得出CNF=90,再由RtCDE计算出CD,CN的长度,根据圆的内接四边形对角互补得出F=60,从而根据三角函数关系计算出FN的值即可【详解】解:(1)如图,连接OD,是的直径,于

23、点AB垂直平分CD,M是OA的中点,DOM=60,又OA=ODOAD是等边三角形OAD=60(2)如图,连接CF,CN,OACD于点M,点M是CD的中点,AB垂直平分CDNC=NDCDF=45,NCD=NDC=45,CND=90,CNF=90,由(1)可知,AOD=60,ACD=30,又交的延长线于点,E=90,在RtCDE中,ACD=30, 在RtCND中,CND=90,NCD=NDC=45,由(1)可知,CAD=2OAD=120,F=180-120=60,在RtCFN中,CNF=90,F=60,【点睛】本题考查了圆的性质、垂径定理、圆的内接四边形对角互补的性质、直角三角形的性质、锐角三角函数的应用,综合性较大,解题时需要灵活运用边与角的换算23、(1)见解析;(1)见解析【分析】(1)利用关于原点对称的点的坐标特征找出A1,B1,C1,然后描点即可;(1)利用网格特点和旋转的性质画出A、C的对应点A1、C1即可【详解】解:(1)如图,A1B1C1为所作;(1)如图,A1B1C1为所作【点睛】本题考查了作图-根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形24、(1)0.3 ,45;(2)108;(3)【分析】(1)首先根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论