版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,圆锥的底面半径OB=6cm,高OC=8cm则这个圆锥的侧面积是( )A30cm2B30cm2C60cm2D120cm22已知反比例函数,则下列结论正确的是( )A点(1,2)在它的图象上B其图象分别位于第一、三象限C随的增大而减小D如果点在它的图象上,则点也在它的图象上3在六张卡片上分别写有,1.5
2、,5,0,六个数,从中任意抽取一张,卡片上的数为无理数的概率是()ABCD4已知一元二次方程,则的值为()ABCD5如图,在ABC中,B=90,AB=6,BC=8,将ABC沿DE折叠,使点C落在ABC边上C处,并且CD/BC,则CD的长是()ABCD6下列事件属于必然事件的是()A篮球队员在罚球线上投篮一次,未投中B掷一次骰子,向上一面的点数是6C任意画一个五边形,其内角和是540D经过有交通信号灯的路口,遇到红灯7不透明袋子中有个红球和个蓝球,这些球除颜色外无其他差别,从袋子中随机取出个球是红球的概率是()ABCD8方程x2x0的解为()Ax1x21Bx1x20Cx10,x21Dx11,x2
3、19抛物线yax2+bx+c(a0)的图象如图,则下列结论中正确的是()Aab0Ba+b+2c20Cb24ac0D2ab010我市某家快递公司,今年8月份与10月份完成投递的快递总件数分别为6万件和8.5万件,设该快递公司这两个月投递总件数的月平均增长率为x,则下列方程正确的是( )A6(1+x)8.5 B6(1+2x)8.5C6(1+x)28.5 D6+6(1+x)+6(1+x)28.5二、填空题(每小题3分,共24分)11如图,AB是O的弦,AB4,点C是O上的一个动点,且ACB45若点M,N分别是AB,BC的中点,则MN长的最大值是_12ABC中,A、B都是锐角,若sinA,cosB,则
4、C_13已知p,q都是正整数,方程7x2px+2009q0的两个根都是质数,则p+q_14如图,点A为函数y(x0)图象上一点,连接OA,交函数y(x0)的图象于点B,点C是x轴上一点,且AOAC,则ABC的面积为_.15若关于的一元二次方程有实数根,则的取值范围是_.16如图,将绕顶点A顺时针旋转后得到,且为的中点,与相交于,若,则线段的长度为_.17用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_182019年元旦前,无为米蒂广场开业期间,某品牌服装店举行购物酬宾抽奖活动,抽奖箱内共有15张奖券,4张面值100元,5张面值200元,6张面值300元,小明从中任抽2张,则
5、中奖总值至少300元的概率为_三、解答题(共66分)19(10分)如图,在直角坐标系中,点A的坐标为(1,0),以OA为边在第一象限内作正方形OABC,点D是x轴正半轴上一动点(OD1),连接BD,以BD为边在第一象限内作正方形DBFE,设M为正方形DBFE的中心,直线MA交y轴于点N如果定义:只有一组对角是直角的四边形叫做损矩形(1)试找出图1中的一个损矩形;(2)试说明(1)中找出的损矩形的四个顶点一定在同一个圆上;(3)随着点D位置的变化,点N的位置是否会发生变化?若没有发生变化,求出点N的坐标;若发生变化,请说明理由;(4)在图中,过点M作MGy轴于点G,连接DN,若四边形DMGN为损
6、矩形,求D点坐标20(6分)在平面直角坐标系中,直线与反比例函数的图象的两个交点分别为点(,)和点(1)求的值和点的坐标;(2)如果点为轴上的一点,且直接写出点A的坐标21(6分)某店以每件60元的进价购进某种商品,原来按每件100元的售价出售,一天可售出50件;后经市场调查,发现这种商品每件售价每降低1元,其销量可增加5件(1)该店销售该商品原来一天可获利润 元(2)设后来该商品每件售价降价元,此店一天可获利润元若此店为了尽量多地增加该商品的销售量,且一天仍能获利2625元,则每件商品的售价应降价多少元?求与之间的函数关系式,当该商品每件售价为多少元时,该店一天所获利润最大?并求最大利润值2
7、2(8分)东坡商贸公司购进某种水果成本为20元/,经过市场调研发现,这种水果在未来48天的销售单价(元/)与时间(天)之间的函数关系式,为整数,且其日销售量()与时间(天)的关系如下表:时间(天)1361020日销售量()11811410810080(1)已知与之间的变化符合一次函数关系,试求在第30天的日销售量;(2)哪一天的销售利润最大?最大日销售利润为多少?23(8分)如图,在ABC中,C90,P为AB上一点,且点P不与点A重合,过点P作PEAB交AC边于E点,点E不与点C重合,若AB10,AC8,设AP的长为x,四边形PECB的周长为y,(1)试证明:AEPABC;(2)求y与x之间的
8、函数关系式24(8分)某校九年级举行毕业典礼,需要从九年级班的名男生名女生中和九年级班的名男生名女生中各随机选出名主持人(1)用树状图或列表法列出所有可能情形;(2)求名主持人恰好男女的概率25(10分)近年来,“在初中数学教学候总使用计算器是否直接影响学生计算能力的发展”这一问题受到了广泛关注,为此,某校随机调查了n名学生对此问题的看法(看法分为三种:没有影响,影响不大,影响很大),并将调查结果 绘制成如下不完整的统计表和扇形统计图,根据统计图表提供的信息,解答下列问题:n名学生对使用计算器影响计算能力的发展看法人数统计表看法没有影响影响不大影响很大学生人数(人)4060m(1)求n的值;(
9、2)统计表中的m= ;(3)估计该校1800名学生中认为“影响很大”的学生人数26(10分)如图,在平行四边形ABCD中,ABC的平分线BF分别与AC、AD交于点E、F(1)求证:ABAF;(2)当AB3,BC4时,求的值参考答案一、选择题(每小题3分,共30分)1、C【详解】解:由勾股定理计算出圆锥的母线长=,圆锥漏斗的侧面积=故选C考点:圆锥的计算2、D【分析】根据反比例函数图象上点的坐标特征以及反比例函数的性质解答即可【详解】解:图象在二、四象限,y随x的增大而增大,选项A、B、C错误;点在函数的图象上,点横纵坐标的乘积则点也在函数的图象上,选项D正确故选:D【点睛】本题考查的知识点是反
10、比例函数的的性质,掌握反比例函数图象的特征及其性质是解此题的关键3、B【解析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率,三是构造的一些不循环的数,如1.010010001(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】这组数中无理数有,共2个,卡片上的数为无理数的概率是 .故选B.【点睛】本题考查了无理数的定义及概率的计算.4、B【分析】根据题干可以明确得到p,q是方程的两根,再利用韦达定理即可求解.【详解】解:由题可知p,q是方程的两根,p+q=,故选B.【点睛】本题考查
11、了一元二次方程的概念,韦达定理的应用,熟悉韦达定理的内容是解题关键.5、A【分析】先由求出AC,再利用平行条件得ACDABC,则对应边成比例,又CD=CD,那么就可求出CD.【详解】B=90,AB=6,BC=8,AC=10,将ABC沿DE折叠,使点C落在AB边上的C处,CD=CD,CDBC,ACDABC,即,CD=,故选A.【点睛】本题考查了翻折变换(折叠问题),相似三角形的判定与性质,熟练掌握和灵活运用相关知识是解题的关键.6、C【分析】必然事件就是一定发生的事件,根据定义即可判断【详解】解:A、篮球队员在罚球线上投篮一次,未投中,是随机事件B、掷一次骰子,向上一面的点数是6,是随机事件C、
12、任意画一个五边形,其内角和是540,是必然事件D、经过有交通信号灯的路口,遇到红灯,是随机事件故选:C【点睛】本题考查了必然事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、A【解析】根据红球的个数以及球的总个数,直接利用概率公式求解即可.【详解】因为共有个球,红球有个,所以,取出红球的概率为,故选A.【点睛】本题考查了简单的概率计算,正确把握概率的计算公式是解题的关键.8、C【解析】通过提取公因式对等式的左边进行因式分解,然后解两个一
13、元一次方程即可【详解】解:x2x0,x(x1)0,x0或x10,x10,x21,故选:C【点睛】本题考查了一元二次方程的解法,属于基本题型,熟练掌握分解因式的方法是解题的关键.9、D【解析】利用抛物线开口方向得到a0,利用抛物线的对称轴在y轴的左侧得到b0,则可对A选项进行判断;利用x1时,y2得到a+b2c,则a+b+2c2c0,于是可对B选项进行判断;利用抛物线与x轴有2个交点可对C选项进行判断;利用10可对D选项进行判断【详解】抛物线开口向上,a0,抛物线的对称轴在y轴的左侧,a、b同号,即b0,ab0,故A选项错误;抛物线与y轴的交点在x轴下方,c0,x1时,y2,a+b+c2,a+b
14、+2c22+c2c0,故B选项错误;抛物线与x轴有2个交点,b24ac0,故 C选项错误;10,而a0,2ab,即2ab0,所以D选项正确故选:D【点睛】本题主要考查二次函数解析式的系数的几何意义,掌握二次函数解析式的系数与图象的开口方向,对称轴,图象与坐标轴的交点的位置关系,是解题的关键.10、C【解析】由题意可得9月份的快递总件数为6(1+x)万件,则10月份的快递总件数为6(1+x)(1+x)万件.【详解】解:由题意可得6(1+x)2=8.5,故选择C.【点睛】理解后一个月的快递数量是以前一个月的快递数量为基础的是解题关键.二、填空题(每小题3分,共24分)11、【分析】根据中位线定理得
15、到MN的最大时,AC最大,当AC最大时是直径,从而求得直径后就可以求得最大值【详解】解:点M,N分别是AB,BC的中点,当AC取得最大值时,MN就取得最大值,当AC时直径时,最大,如图,故答案为:【点睛】本题考查了三角形的中位线定理、等腰直角三角形的性质及圆周角定理,解题的关键是利用中位线性质将MN的值最大问题转化为AC的最大值问题,难度不大12、60【分析】先根据特殊角的三角函数值求出A、B的度数,再根据三角形内角和定理求出C即可作出判断【详解】ABC中,A、B都是锐角,sinA,cosB,AB60C180AB180606060故答案为:60【点睛】本题考查的是特殊角的三角函数值及三角形内角
16、和定理,比较简单13、337【分析】利用一元二次方程根与系数的关系,得出有关p,q的式子,再利用两个根都是质数,可分析得出结果【详解】解:x1+x2,x1x2287q741q,x1和x2都是质数,则只有x1和x2是7和41,而q1,所以7+41,p336,所以p+q337,故答案为:337.【点睛】此题考查了一元二次方程根与系数的关系以及质数的概念,题目比较典型14、6.【分析】作辅助线,根据反比例函数关系式得:SAOD=, SBOE=,再证明BOEAOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论【详解】如图,分别作BEx轴,ADx轴,垂足分别为点E、D,BE
17、AD,BOEAOD,OA=AC,OD=DC,SAOD=SADC=SAOC,点A为函数y=(x0)的图象上一点,SAOD=,同理得:SBOE=,故答案为6.15、【分析】对于一元二次方程,当时有实数根,由此可得m的取值范围.【详解】解:由题意可得,解得.故答案为:.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式是解题的关键.16、【分析】根据旋转的性质可知ACC1为等边三角形,进而得出BC1=CC1=AC1=2,ADC1是含20的直角三角形,得到DC1的长,利用线段的和差即可得出结论【详解】根据旋转的性质可知:AC=AC1,CAC1=60,B1C1=BC,B1C1A
18、=C,ACC1为等边三角形,AC1C=C=60,CC1=AC1C1是BC的中点,BC1=CC1=AC1=2,B=C1AB=20B1C1A=C=60,ADC1=180-(C1AB+B1C1A)=180-(20+60)=90,DC1=AC1=1,B1D=B1C1-DC1=4-1=2故答案为:2【点睛】本题考查了旋转的性质以及直角三角形的性质,得出ADC1是含20的直角三角形是解答本题的关键17、5【解析】试题解析:半径为10的半圆的弧长为:210=10围成的圆锥的底面圆的周长为10设圆锥的底面圆的半径为r,则2r=10解得r=518、【分析】有15张奖券中抽取2张的所有等可能结果数为种,其中中奖总
19、值低于300元的有种知中奖总值至少300元的结果数为种,再根据概率公式求解可得【详解】解:从15张奖券中抽取2张的所有等可能结果数为1514210种,其中中奖总值低于300元的有4312种,则中奖总值至少300元的结果数为21012198种,所以中奖总值至少300元的概率为,故答案为:【点睛】本题主要考查列表法与树状图法,解题的关键根据题意得出所有等可能的结果数和符合条件的结果数三、解答题(共66分)19、(1)详见解析;(2)详见解析;(3)N点的坐标为(0,1);(4)D点坐标为(3,0)【解析】试题分析:(1)根据题中给出的损矩形的定义,从图找出只有一组对角是直角的四边形即可;(2)证明
20、四边形BADM四个顶点到BD的中点距离相等即可;(3)利用同弧所对的圆周角相等可得MAD=MBD,进而得到OA=ON,即可求得点N的坐标;(4)根据正方形的性质及损矩形含有的直角,利用勾股定理求解(1)四边形ABMD为损矩形; (2)取BD中点H,连结MH,AH四边形OABC,BDEF是正方形ABD,BDM都是直角三角形HA=BD HM=BDHA=HB=HM=HD=BD损矩形ABMD一定有外接圆 (3)损矩形ABMD一定有外接圆HMAD =MBD四边形BDEF是正方形MBD=45MAD=45OAN=45OA=1 ON=1 N点的坐标为(0,-1)(4) 延长AB交MG于点P,过点M作MQ轴于点
21、Q设MG=,则四边形APMQ为正方形PM=AQ=-1 OG=MQ=-1MBPMDQDQ=BP=CG=-2MN2ND2MD2四边形DMGN为损矩形=2.5或=1(舍去)OD=3 D点坐标为(3,0).考点:本题考查的是确定圆的条件,正方形的性质点评:解答本题的关键是理解损矩形的只有一组对角是直角的性质,20、(1)k=1,Q(-1,-1)(2)【分析】(1)将点P代入直线中即可求出m的值,再将P点代入反比例函数中即可得出k的值,通过直线与反比例函数联立即可求出Q的坐标;(2)先求出PQ之间的距离,再利用直角三角形斜边的中线等于斜边的一半即可求出点A的坐标.【详解】解:(1)点 (,)在直线上,
22、点 (,)在上, 点为直线与的交点, 解得 点坐标为(,) (2)由勾股定理得 (,0) , (,0)【点睛】本题主要考查反比例函数与一次函数的综合,掌握待定系数法,勾股定理是解题的关键.21、(1)2000;(2)售价是75元,售价为85元,利润最大为3125元【分析】(1)用每件利润乘以50件即可;(2)每件售价降价x元,则每件利润为(100-60-x)元,销售量为(50+5x)件,它们的乘积为利润y,利用y=2625得到方程(100-60-x)(50+5x)=2625,然后解方程即可;由于y=(100-60-x)(50+5x),则可利用二次函数的性质确定最大利润值【详解】解:(1)解:(
23、1)该网店销售该商品原来一天可获利润为(100-60)50=2000(元),故答案为2000;(2)解得或,又因尽量多增加销售量,故.售价是元答:每件商品的售价应降价25元;,当时,售价为元,利润最大为3125元答:答:当该商品每件售价为85元时,该网店一天所获利润最大,最大利润值为3125元【点睛】本题考查了二次函数的应用:在商品经营活动中,经常会遇到求最大利润,最大销量等问题解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值,实际问题中自变量x的取值要使实际问题有意义,因此在求二次函数的最值时,一定要注意自变量x的取值范围22、(1)第30天的日销售量为;(2)当时,【分析
24、】(1)设y=kt+b,利用待定系数法即可解决问题(2)日利润=日销售量每kg利润,据此分别表示前24天和后24天的日利润,根据函数性质求最大值后比较得结论【详解】(1)设y=kt+b,把t=1,y=118;t=3,y=114代入得到:解得,,y=-2t+1将t=30代入上式,得:y=-230+1=2所以在第30天的日销售量是2kg(2)设第天的销售利润为元,则当时,由题意得,=t=20时,w最大值为120元 当时,对称轴t=44,a=20,在对称轴左侧w随t增大而减小,t=25时,w最大值为210元,综上所述第20天利润最大,最大利润为120元【点睛】此题主要考查了二次函数的应用,熟练掌握各函数的性质和图象特征,针对所给条件作出初步判断后需验证其正确性,最值问题需由函数的性质求解时,正确表达关系式是关键23、(1)见解析;(2)y=(0 x6.4)【分析】(1)可证明APE和ACB都是直角三角形,还有一个公共角,从而得出:AEPABC;(2)由勾股定理得出BC,再由相似,求出PEx,即可得出y与x的函数关系式【详解】(1)PEAB,APE90,又C90,APEC,又AA,AEPABC;(2)在RtABC中,AB10,AC8,BC,由(1)可知,APEACB,又APx,即,PEx, ,(0 x6.4)【点睛】本题考查了相似三角形的性质问题,掌握相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省上饶市婺源天佑中学2024-2025学年高三上学期11月测试生物试题
- 《演唱会赞助方案》课件
- 《销售技巧培训》课件
- 2024年新高一英语初升高衔接《完形填空》含答案解析
- 乡镇名称政府2024年工作报告
- 擦涂用品市场发展现状调查及供需格局分析预测报告
- 粘蝇纸产业深度调研及未来发展现状趋势
- 清洁制剂产业深度调研及未来发展现状趋势
- 《恭贺新禧模板》课件
- 分段输送机产品入市调查研究报告
- 国开电大本科《行政法与行政诉讼法》期末考试案例分析题库2023春期版
- 管道热损失的计算方法
- 智能控制导论智慧树知到答案章节测试2023年昆明理工大学
- 新产品APQP开发计划表
- 施工现场临时用电安全技术规范试题
- 九招致胜课件完整版
- (岗位职责)混凝土搅拌站的职责总汇
- 2023中国软件质量研究报告
- 软件开发论文参考文献,参考文献
- 机动车维修竣工出厂合格证样式
- ICU建设与管理指南
评论
0/150
提交评论