版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一
2、并交回。一、选择题(每小题3分,共30分)1如图,ABC是O的内接三角形,AOB110,则ACB的度数为()A35B55C60D702下列事件是必然事件的是( )A任意购买一张电影票,座号是“7排8号”B射击运动员射击一次,恰好命中靶心C抛掷一枚图钉,钉尖触地D13名同学中,至少2人出生的月份相同3已知在RtABC中,A90,AB3,BC5,则cosB的值是()ABCD4抛物线的对称轴是直线()Ax=-2Bx=-1Cx=2Dx=15一个几何体是由若干个相同的正方体组成的,其主视图和左视图如图所示,则这个几何体最多可由多少个这样的正方体组成( )ABCD6如果将抛物线y=x22向右平移3个单位,
3、那么所得到的新抛物线的表达式是()Ay=x25 By=x2+1 Cy=(x3)22 Dy=(x+3)227若点都是反比例函数的图象上的点,并且,则下列各式中正确的是( )ABCD8从1、2、3、4四个数中随机选取两个不同的数,分别记为、,则关于的一元二次方程有实数解的概率为( )ABCD9抛物线y=(x2)23,下列说法正确的是( )A开口向下,顶点坐标(2,3)B开口向上,顶点坐标(2,3)C开口向下,顶点坐标(2,3)D开口向上,顶点坐标(2,3)10如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为40,若DE=3米,CE=2米,CE平行于江面AB,迎水坡BC的坡度i=1:0.7
4、5,坡长BC=10米,则此时AB的长约为()(参考数据:sin400.64,cos400.77,tan400.84)A5.1米B6.3米C7.1米D9.2米二、填空题(每小题3分,共24分)11如图,的半径于点,连接并延长交于点,连接.若,则的长为 _ . 12点(2,3)关于原点对称的点的坐标是_13在一个布袋中装有四个完全相同的小球,它们分别写有“美”、“丽”、“罗”、“山”的文字先从袋中摸出1个球后放回,混合均匀后再摸出1个球,求两次摸出的球上是含有“美”“丽”二字的概率为_14若线段AB=10cm,点C是线段AB的黄金分割点,则AC的长为_cm.(结果保留根号)15在直角坐标平面内有一
5、点A(3,4),点A与原点O的连线与x轴的正半轴夹角为,那么角的余弦值是_16设a,b是一个直角三角形两条直角边的长,且,则这个直角三角形的斜边长为_.17如图,直线,等腰直角三角形的三个顶点分别在,上,90,交于点,已知与的距离为2,与的距离为3,则的长为_18已知扇形的圆心角为,所对的弧长为,则此扇形的面积是_.三、解答题(共66分)19(10分)如图,在中,点在边上,点在边上,且,(1)求证:;(2)若,求的长20(6分)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠形风筝进价每个为10元,当售价为每个12元时,销售量为180个,若售价每提高1元,销
6、售量就会减少10个,请解答以下问题:(1)用表达式表示蝙蝠形风筝销售量y(个)与售价x(元)之间的函数关系(12x30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?21(6分)(1)3tan30-tan45+2sin60 (2)22(8分)如图是图是其侧面示意图(台灯底座高度忽略不计),其中灯臂,灯罩,灯臂与底座构成的可以绕点上下调节一定的角度使用发现:当与水平线所成的角为30时,台灯光线最佳现测得点D到桌面的距离为请通过计算说明此时台灯光线是否为最佳?(参考数据:取1.73)23(8分)解下列两题:(1)已
7、知,求的值;(2)已知为锐角,且2sin=4cos30tan60,求的度数24(8分)在ABC中,P为边AB上一点(1)如图1,若ACPB,求证:AC2APAB;(2)若M为CP的中点,AC2, 如图2,若PBMACP,AB3,求BP的长; 如图3,若ABC45,ABMP60,直接写出BP的长 25(10分)某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?26(10分)某汽车零部件生产企业的利润逐年提高,据统计,2015年
8、利润为2亿元,2017年利润为2.88亿元,求该企业从2015年到2017年利润的年平均增长率参考答案一、选择题(每小题3分,共30分)1、B【分析】直接根据圆周角定理进行解答即可【详解】解:AOB与ACB是同弧所对的圆心角与圆周角,AOB=110,ACB=AOB=55故选:B【点睛】本题考查了三角形的外接圆与外心,圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、D【分析】根据必然事件的定义即可得出答案.【详解】ABC均为随机事件,D是必然事件,故答案选择D.【点睛】本题考查的是必然事件的定义:一定会发生的事情.3、A【解析】根据余弦函数的定义即可求解
9、【详解】解:在ABC中,A=90,AB=3,BC=5,cosB= 故选A【点睛】本题主要考查了余弦函数的定义,在直角三角形中,余弦为邻边比斜边,解决本题的关键是要熟练掌握余弦的定义.4、B【解析】令 解得x=-1,故选B.5、B【分析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可【详解】解:综合主视图与左视图分析可知,第一行第1列最多有2个,第一行第2列最多有1个,第一行第3列最多有2个;第二行第1列最多有1个,第二行第2列最多有1个,第二行第3列最多有1个;第三行第1列最多有2个,第三行第2列最多有1个,第三行第3列最多有2个;所以最多有:2+1+2+1+1+1+2+1+
10、2=13(个),故选B【点睛】本题考查了几何体三视图,重点是考查学生的空间想象能力掌握以下知识点:主视图反映长和高,左视图反映宽和高,俯视图反映长和宽.6、C【解析】先求出原抛物线的顶点坐标,再根据向右平移横坐标加求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可【详解】y=x22的顶点坐标为(0,2),向右平移3个单位,平移后的抛物线的顶点坐标为(3,2),所得到的新抛物线的表达式是y=(x3)22.故选:C.【点睛】考查二次函数图象的平移,掌握二次函数图象平移的规律是解题的关键.7、B【详解】解:根据题意可得:反比例函数处于二、四象限,则在每个象限内为增函数,且当x0时y0,当x0
11、时,y0,.8、C【分析】先根据一元二次方程有实数根求出ac4,继而画树状图进行求解即可.【详解】由题意,=42-4ac0,ac4,画树状图如下:a、c的积共有12种等可能的结果,其中积不大于4的有6种结果数,所以a、c的积不大于4(也就是一元二次方程有实数根)的概率为,故选C.【点睛】本题考查了一元二次方程根的判别式,列表法或树状图法求概率,得到ac4是解题的关键.9、A【解析】根据抛物线的解析式,由a的值可得到开口方向,由顶点式可以得到顶点坐标.【详解】解: y=(x2)23a=-10, 抛物线的开口向下,顶点坐标(2,3)故选A【点睛】本题考查二次函数的性质,解题的关键是根据二次函数的解
12、析式可以得到开口方向、对称轴、顶点坐标等性质10、A【解析】如图,延长DE交AB延长线于点P,作CQAP于点Q,CEAP,DPAP,四边形CEPQ为矩形,CE=PQ=2,CQ=PE,i=,设CQ=4x、BQ=3x,由BQ +CQ=BC可得(4x)+(3x)=102,解得:x=2或x=2(舍),则CQ=PE=8,BQ=6,DP=DE+PE=11,在RtADP中,AP=13.1,AB=APBQPQ=13.162=5.1,故选A.点睛:此题考查了俯角与坡度的知识注意构造所给坡度和所给锐角所在的直角三角形是解决问题的难点,利用坡度和三角函数求值得到相应线段的长度是解决问题的关键二、填空题(每小题3分,
13、共24分)11、 【详解】解:连接BE的半径,AB=2 且 ,若设的半径为,则.在ACO中,根据勾股定理有,即,解得:.是的直径, .故答案为:【点睛】在与圆的有关的线段的计算中,一定要注意各种情况下构成的直角三角形,有了直角三角形就有可能用勾股定理、三角函数等知识点进行相关计算.本题抓住由半径、弦心距、半弦构成的直角三角形和半圆上所含的直角三角形,三次利用勾股定理并借助方程思想解决问题.12、(-2,-3)【解析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”可知:点P(2,3)关于原点对称的点的坐标是(2,3).故答案为(2,3).13、【分析】画树状图展示所有16种等可能的结果数,
14、再找出两次摸出的球上是写有“美丽”二字的结果数,然后根据概率公式求解【详解】(1)用1、2、3、4别表示美、丽、罗、山,画树形图如下:由树形图可知,所有等可能的情况有16种,其中“1,2”出现的情况有2种,P(美丽)故答案为:【点睛】本题考查了用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比14、 或【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,
15、C是黄金分割点,当ACBC时,则有AC=AB=10=,当ACBC时,则有BC=AB=10=,AC=AB-BC=10-( )= ,AC长为 cm或 cm.故答案为: 或【点睛】本题考查了黄金分割点的概念注意这里的AC可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键15、【解析】根据勾股定理求出OA的长度,根据余弦等于邻边比斜边求解即可.【详解】点A坐标为(3,4),OA=5,cos=,故答案为【点睛】本题主要考查锐角三角函数的概念,在直角三角形中,在直角三角形中,正弦等于对边比斜边;余弦等于邻边比斜边;正切等于对边比邻边,熟练掌握三角函数的概念是解题关键.16、【分析】此题实际上求的
16、值设t=a2+b2,将原方程转化为关于t的一元二次方程t(t+1)=12,通过解方程求得t的值即可【详解】设t=a2+b2,则由原方程,得t(t+1)=12,整理,得(t+4)(t-3)=0,解得t=3或t=-4(舍去)则a2+b2=3,a,b是一个直角三角形两条直角边的长,这个直角三角形的斜边长为故答案是:【点睛】此题考查了换元法解一元二次方程,以及勾股定理,熟练运用勾股定理是解本题的关键17、【分析】作AF,BE,证明ACFCBE,求出CE,根据勾股定理求出BC、AC,作DH,根据DHAF证明CDHCAF,求出CD,再根据勾股定理求出BD.【详解】如图,作AF,BE,则AFC=BEC=90
17、,由题意得BE=3,AF=2+3=5,是等腰直角三角形,90,AC=BC,BCE+ACF=90,BCE+CBE=90,ACF=CBE,ACFCBE,CE=AF=5,CF=BE=3,,作DH,DHAFCDHCAF, ,CD=,BD=,故答案为:.【点睛】此题考查等腰直角三角形的性质,全等三角形的判定及性质,相似三角形的判定及性质,平行线间的距离处处相等的性质,正确引出辅助线解决问题是解题的关键.18、【分析】利用弧长公式列出关系式,把圆心角与弧长代入求出扇形的半径,即可确定出扇形的面积【详解】设扇形所在圆的半径为r扇形的圆心角为240,所对的弧长为,l,解得:r=6,则扇形面积为rl=故答案为:
18、【点睛】本题考查了扇形面积的计算,以及弧长公式,熟练掌握公式是解答本题的关键三、解答题(共66分)19、(1)证明见解析;(1)AB=1【分析】(1)由题意根据相似三角形的判定定理即可证明;(1)根据题意利用相似三角形的相似比,即可分析求解.【详解】解:(1)证明:,. ,为公共角,.(1)(-1舍去).【点睛】本题主要考查相似三角形的判定和性质,能够证得是解答此题的关键20、(1)y=10 x300(12x30);(2) 王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元;(3) 当售价定为20元时,王大伯获得利润最大,最大利润是2元.【解析】试题分析:(1)设蝙蝠型风筝售价为x
19、元时,销售量为y个,根据“当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个”,即可得出y关于x的函数关系式;(2)设王大伯获得的利润为W,根据“总利润=单个利润销售量”,即可得出W关于x的函数关系式,代入W=840求出x的值,由此即可得出结论;(3)利用配方法将W关于x的函数关系式变形为W=,根据二次函数的性质即可解决最值问题试题解析:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=18010(x12)=10 x+300(12x30)(2)设王大伯获得的利润为W,则W=(x10)y=,令W=840,则=840,解得:=16,=1答:王大伯为了让利给
20、顾客,并同时获得840元利润,售价应定为16元(3)W=10 x2+400 x3000=,a=100,当x=20时,W取最大值,最大值为2答:当售价定为20元时,王大伯获得利润最大,最大利润是2元考点:二次函数的应用;一元二次方程的应用;二次函数的最值;最值问题21、(1);(2)【分析】(2)根据特殊角的三角函数值,代入求出即可(2)根据特殊角的三角函数值,零指数幂求出每一部分的值,代入求出即可【详解】(1)(2)【点睛】本题考查了实数的运算法则,同时也利用了特殊角的三角函数值、0指数幂的定义及负指数幂定义解决问题22、此时台灯光线是最佳【解析】如图,作于,于,于解直角三角形求出即可判断【详
21、解】解:如图,作于,于,于 ,四边形是矩形,在中,在中,此时台灯光线为最佳【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线面构造直角三角形解决问题,属于中考常考题型23、 (1) 6;(2) 锐角=30【分析】(1)根据等式,设a=3k,b=4k,代入所求代数式化简求值即可;(2)由cos30=,tan60=,化简即可得出sin的值,根据特殊角的三角函数值即可得【详解】解:(1),设a=3k,b=4k,=6,故答案为:6;(2)2sin=4cos30tan60=4=,sin=,锐角=30,故答案为:30【点睛】本题考查了化简求值,特殊角的三角函数值的应用,掌握化简求值的计算是解题的关键24、(1)证明见解析;(2)BP;BP【解析】试题分析:(1)根据已知条件易证ACPABC,由相似三角形的性质即可证得结论;(2)如图,作CQBM交AB延长线于Q,设BPx,则PQ2x,易证APCACQ,所以AC2APAQ,由此列方程,解方程即可求得BP的长;如图:作CQAB于点Q,作CP0CP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省上饶市婺源天佑中学2024-2025学年高三上学期11月测试生物试题
- 《演唱会赞助方案》课件
- 《销售技巧培训》课件
- 2024年新高一英语初升高衔接《完形填空》含答案解析
- 乡镇名称政府2024年工作报告
- 擦涂用品市场发展现状调查及供需格局分析预测报告
- 粘蝇纸产业深度调研及未来发展现状趋势
- 清洁制剂产业深度调研及未来发展现状趋势
- 《恭贺新禧模板》课件
- 分段输送机产品入市调查研究报告
- 江苏省房屋建筑和市政基础设施工程施工招标评标办法
- 新建加油站工程施工组织设计方案
- 余姚农业信息综合服务系统需求说明
- 司法涉案目的评估指南
- 光伏电站消纳利用率计算导则
- 焓熵图(膨胀线)
- 青春期多囊卵巢综合征诊治共识.ppt
- 前后鼻音生字表
- 人教版八年级上册英语单词表默写版(直接打印)
- 五年级数学质量分析经验交流发言稿(共3页)
- 工程的材料及成型技术基础概念鞠鲁粤编
评论
0/150
提交评论