




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题
2、卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1由曲线xy=1,直线y=x,x=3及x轴所围成的曲边四边形的面积为( )A116 B92 C12函数是定义在R上的奇函数,函数的图象与函数的图象关于直线对称,则的值为( )A2 B1 C0 D不能确定3若,则( )A2B0C-1D-24已知为定义在上的奇函数,当时,则的值域为( )ABCD5将点的直角坐标化成极坐标为( )ABCD6甲、乙、丙,丁四位同学一起去问老师询问成语竞赛的成绩。老师说:你们四人中有两位优秀,两位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩
3、看后甲对大家说:我还是不知道我的成绩,根据以上信息,则( )A乙、丁可以知道自己的成绩B乙可以知道四人的成绩C乙、丁可以知道对方的成绩D丁可以知道四人的成绩7已知点P在直径为2的球面上,过点P作球的两两相互垂直的三条弦PA,PB,PC,若,则的最大值为AB4CD38不等式的解集是( )ABCD9已知向量,则与的夹角为()ABCD10已知,则下列三个数,( )A都大于B至少有一个不大于C都小于D至少有一个不小于11如图为某几何体的三视图,则该几何体的体积为()ABCD12z是z的共轭复数,若z+z=2,(z-zA1+iB-1-iC-1+iD1-i二、填空题:本题共4小题,每小题5分,共20分。1
4、3已知函数的图像关于直线对称,则_.14在极坐标系中,点到直线的距离为_.15为贯彻教育部关于全面推进素质教育的精神,某学校推行体育选修课.甲、乙、丙、丁四个人分别从太极拳、足球、击剑、游泳四门课程中选择一门课程作为选修课,他们分别有以下要求:甲:我不选太极拳和足球; 乙:我不选太极拳和游泳;丙:我的要求和乙一样; 丁:如果乙不选足球,我就不选太极拳.已知每门课程都有人选择,且都满足四个人的要求,那么选击剑的是_.16已知分别为的三个内角的对边,且,为内一点,且满足,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知命题实数满足(其中),命题方程表示双曲线.(
5、I)若,且为真命题,求实数的取值范围;()若是的必要不充分条件,求实数的取值范围18(12分)选修4-4:坐标系与参数方程在直角坐标系中,已知点,直线(为参数),以坐标原点为极点,以轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程是.(1)求曲线的直角坐标方程;(2)若直线与曲线的交点为,求的值.19(12分)长时间用手机上网严重影响着学生的健康,某校为了解A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).如果学生平均每周手机上网的时长大于21小时,则称为“过度用网”(1
6、)请根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值;(2)从A班的样本数据中有放回地抽取2个数据,求恰有1个数据为“过度用网”的概率;(3)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为,写出的分布列和数学期望E.20(12分)已知函数,.(1)讨论的单调性;(2)若有两个零点,求实数的取值范围.21(12分)在中,角所对的边分别为,其中(1)求;(2)求边上的高,22(10分)知函数.(1)当时,求的解集;(2)已知,若对于,都有成立,求的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
7、要求的。1、C【解析】试题分析:由题意得,由xy=1和y=x,解得交点坐标为(1,1),所以围成的封闭图形的面积S=(1考点:定积分求解曲边形的面积2、A【解析】试题分析:函数是定义在上的奇函数,令代入可得,函数关于对称,由函数的图象与函数的图象关于直线对称,函数关于对称从而有,故选A考点:奇偶函数图象的对称性【思路点睛】利用奇函数的定义可把已知转化为,从而可得函数关于对称,函数的图象与函数的图象关于直线对称,则关于对称,代入即可求出结果3、C【解析】令可得:,令,可得:,据此可得:-1.本题选择C选项.点睛:因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展
8、开式各项系数和的一种重要方法4、A【解析】先用基本不等式求时函数的值域,然后利用函数奇偶性的性质即可得到整个函数的值域.【详解】当时,(当且仅当时取等号),又为奇函数,当x0时,,则的值域为.故选:A.【点睛】本题考查函数奇偶性的应用,考查利用基本不等式求函数最值问题,属于基础题.5、B【解析】分析:求出,且在第三象限,由此能将点M的直角坐标化成极坐标.详解:点M的直角坐标,在第三象限,.将点M的直角坐标化成极坐标.故选B.点睛:极坐标与直角坐标的互化,常用方法有代入法、平方法等,还经常会用到同乘(同除以)等技巧6、A【解析】根据甲的所说的话,可知乙、丙的成绩中一位优秀、一位良好,再结合简单的
9、合情推理逐一分析可得出结果.【详解】因为甲、乙、丙、丁四位同学中有两位优秀、两位良好,又甲看了乙、丙的成绩且还不知道自己的成立,即可推出乙、丙的成绩中一位优秀、一位良好,又乙看了丙的成绩,则乙由丙的成绩可以推出自己的成绩,又甲、丁的成绩中一位优秀、一位良好,则丁由甲的成绩可以推出自己的成绩.因此,乙、丁知道自己的成绩,故选:A.【点睛】本题考查简单的合情推理,解题时要根据已知的情况逐一分析,必要时可采用分类讨论的思想进行推理,考查逻辑推理能力,属于中等题.7、A【解析】由题意得出,设,利用三角函数辅助角公式可得出的最大值.【详解】由于、是直径为的球的三条两两相互垂直的弦,则,所以,设,其中为锐
10、角且,所以,的最大值为,故选A.【点睛】本题考查多面体的外接球,考查棱长之和的最值,在直棱柱或直棱锥的外接球中,若其底面外接圆直径为,高为,其外接球的直径为,则,充分利用这个模型去解题,可简化计算,另外在求最值时,可以利用基本不等式、柯西不等式以及三角换元的思想来求解8、C【解析】原不等式可转化为,等同于,解得或故选C.9、D【解析】根据题意,由向量数量积的计算公式可得cos的值,据此分析可得答案【详解】设与的夹角为,由、的坐标可得|5,|3,50+5(3)15,故, 所以.故选D【点睛】本题考查向量数量积的坐标计算,涉及向量夹角的计算,属于基础题10、D【解析】分析:利用基本不等式可证明,假
11、设三个数都小于,则不可能,从而可得结果.详解:,假设三个数都小于,则,所以假设不成立,所以至少有一个不小于,故选D.点睛:本题主要考查基本不等式的应用,正难则反的思想,属于一道基础题. 反证法的适用范围:(1)否定性命题;(2)结论涉及“至多”、“至少”、“无限”、“唯一”等词语的命题;(3)命题成立非常明显,直接证明所用的理论较少,且不容易证明,而其逆否命题非常容易证明;(4)要讨论的情况很复杂,而反面情况较少11、A【解析】根据三视图得出几何体为一个圆柱和一个长方体组合而成,由此求得几何体的体积.【详解】由三视图可知,该几何体由圆柱和长方体组合而成,故体积为,故选A.【点睛】本小题主要考查
12、三视图还原原图,考查圆柱、长方体体积计算,属于基础题.12、D【解析】试题分析:设z=a+bi,z=a-bi,依题意有2a=2,-2b=2,故考点:复数概念及运算【易错点晴】在复数的四则运算上,经常由于疏忽而导致计算结果出错.除了加减乘除运算外,有时要结合共轭复数的特征性质和复数模的相关知识,综合起来加以分析.在复数的四则运算中,只对加法和乘法法则给出规定,而把减法、除法定义为加法、乘法的逆运算.复数代数形式的运算类似多项式的运算,加法类似合并同类项;复数的加法满足交换律和结合律,复数代数形式的乘法类似多项式乘以多项式,除法类似分母有理化;用类比的思想学习复数中的运算问题.二、填空题:本题共4
13、小题,每小题5分,共20分。13、【解析】利用辅助角公式化简,结合题意可得,即可求解,得到答案.【详解】由题意,函数,因为函数的图象关于直线对称,所以,两边平方得,解得.【点睛】本题主要考查了三角函数的图象与性质的应用,其中根据辅助角公式把函数化简为三角函数的形式是研究三角函数性质的关键,着重考查了推理与运算能力,属于基础题.14、【解析】把点的极坐标化为直角坐标,把直线的极坐标方程化为直角坐标方程,利用点到直线的距离公式求出A到直线的距离【详解】解:点A(2,)的直角坐标为(0,2),直线(cos+sin)6的直角坐标方程为 x+y60,利用点到直线的距离公式可得,点A(2,)到直线(cos
14、+sin)6的距离为 ,故答案为 .【点睛】本题主要考查把极坐标方程化为直角坐标方程的方法,点到直线的距离公式的应用,属于基础题15、丙【解析】列出表格,用表示已选的,用表示未选的课程,逐个将每门课程所选的人确定下来,即可得知选击剑的人是谁。【详解】在如下图中,用表示该门课程被选择,用表示该门课程未选,且每行每列只有一个勾,太极拳足球击剑游泳甲乙丙丁从上述四个人的要求中知,太极拳甲、乙、丙都不选择,则丁选择太极拳,丁所说的命题正确,其逆否命题为“我选太极拳,那么乙选足球”为真,则选足球的是乙,由于乙、丙、丁都为选择游泳,那么甲选择游泳,最后只有丙选择击剑。故答案为:丙。【点睛】本题考查合情推理
15、,充分利用假设法去进行论证,考查推理论证能力,属于中等题。16、【解析】运用余弦定理可求得,利用同角三角函数关系式中的平方关系求得,再由题意可得O为的重心,得到,由三角形的面积公式,解方程可得所求值.【详解】由余弦定理可得,因为,且,所以,整理得,所以,从而得,满足,且,可得O为的重心,且,即,则,故答案是.【点睛】该题考查的是有关解三角形的问题,在解题的过程中,涉及到的知识点有余弦定理,同角三角函数关系,三角形重心的性质,三角形面积公式,熟练掌握基础知识是解题的关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()()【解析】()将代入不等式,并解出命题中的不等式,同
16、时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;()解出命题中的不等式,由是的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围【详解】()由 得, 若,为真时实数t的取值范围是.由表示双曲线,得,即为真时实数的取值范围是.若为真,则真且真,所以实数t的取值范围是 ()设, 是的必要不充分条件,. 当时,有,解得; 当时,显然,不合题意 实数a的取值范围是【点睛】本题第(1)问考查复合命题的真假与参数,第(2)问考查充分必要性与参数,一般要结合两条件之间的关系转化为集合
17、间的包含关系,考查转化与化归数学思想,属于中等题18、(1);(2).【解析】分析:(1)直接代极坐标公式得到曲线的直角坐标方程.(2) 把直线的参数方程代入,得,再利用直线参数方程t的几何意义解答.详解:(1)对于曲线,两边同乘以可得,即,所以它的直角坐标方程为.(2)把直线的参数方程代入,得,所以,因为点在直线上,所以,因为,所以,所以.点睛:(1)本题主要考查极坐标和直角坐标的互化,考查直线参数方程t的几何意义,意在考查学生对这些知识的掌握水平和基本运算能力.(2) 过定点、倾斜角为的直线的参数方程(为参数).当动点在定点上方时,. 当动点在定点下方时,.19、(1)19小时;22小时.
18、(2)(3)分布列见详解;.【解析】(1)根据平均数计算公式,分别计算两组数据的平均数即可;(2)根据二项分布的概率计算公式即可求得;(3)根据题意写出的取值范围,再根据古典概型概率计算公式求得对应概率,写出分布列,根据分布列求得期望.【详解】(1)A班样本数据的平均值为,由此估计A班学生每周平均上网时间19小时;B班样本数据的平均值为,由此估计B班学生每周平均上网时间22小时.(2)因为从A班的6个样本数据中随机抽取1个的数据,为“过度用网”的概率是,根据二项分布的概率计算公式:从A班的样本数据中有放回的抽取2个的数据,恰有1个数据为“过度用网”的概率:.(3)的可能取值为0,1,2,3,4
19、.,.的分布列是:01234P.【点睛】本题考查根据茎叶图计算数据的平均值,离散型随机变量的分布列求解以及根据分布列求解数学期望,属综合中档题.20、 (1) 当a0,在(0,2)上单调递增,在(2,+)递减;当,在(0,2)和上单调递增,在(2,)递减;当a=,在(0,+)递增;当a,在(0,)和(2,+)上单调递增,在(,2)递减;(2) .【解析】(1)求出,分四种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,可证明,有两个零点等价于,得,可证明,当时与当且时,至多一个零点,综合讨
20、论结果可得结论.【详解】(1)的定义域为,(i)当时,恒成立,时,在上单调递增;时,在上单调递减.(ii)当时,由得,(舍去),当,即时,恒成立,在上单调递增;当,即时,或,恒成立,在上单调递增;时,恒成立,在上单调递减.当,即时,或时,恒成立,在单调递增,时,恒成立,在上单调递减.综上,当时,单调递增区间为,单调递减区间为;当时,单调递增区间为,无单调递减区间为;当时,单调递增区间为,单调递减区间为.(2)由(1)知当时,单调递增区间为,单调递减区间为,又,取,令,则在成立,故单调递增,有两个零点等价于,得,当时,只有一个零点,不符合题意;当时,在单调递增,至多只有一个零点,不符合题意;当且时,有两个极值,记,令,则,当时,在单调递增;当时,在单调递减,故在单调递增,时,故,又,由(1)知,至多只有一个零点,不符合题意,综上,实数的取值范围为.【点睛】本题是以导数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 10 描述方向教学设计-2023-2024学年科学二年级下册冀人版
- 2拉拉手 交朋友第二课时 教学设计-2023-2024学年道德与法治一年级上册(部编版)
- 2018-2019学年八年级上册(部编版)历史同步教学设计:第18课 从九一八事变到西安事变
- 《第四章 第1节 光的直线传播》教学设计-2023-2024学年初中物理人教版八年级上册
- 13猫(教案)-2024-2025学年统编版语文四年级下册
- 2024年七年级地理上册 2.2 沧海桑田 从世界地图上得到的启示教学设计 (新版)新人教版
- 2024-2025学年高中历史 第四单元 王安石变法 第1课 社会危机四伏和庆历新政(3)教学教学设计 新人教版选修1
- 真正的礼仪课件
- 《光的反射》(教案)苏教版科学五年级上册
- 2023四年级数学上册 5 平行四边形和梯形教学设计 新人教版
- 中建项目移动式操作平台施工方案
- 高级职称(副高)护理学考点秘籍
- 2023年贵州省中学生生物学竞赛考试(初赛)试题
- 诊所消防安全管理制度模版(2篇)
- 2024年度杭州市二手房交易合同履行监管措施3篇
- 空调水系统安装施工方案
- 音乐疗愈课件
- 《冗余度机器人》课件
- 《鹿角和鹿腿》第二课时公开课一等奖创新教学设计
- 八项规定解读
- 催收团队管理经验分享
评论
0/150
提交评论