版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,在平面直角坐标系中,是椭圆的右焦点,直线与椭圆交于,两点,且,则该椭圆的离心率是()A. B. C. D.2.若集合,,则()A. B. C. D.3.已知抛物线和点,直线与抛物线交于不同两点,,直线与抛物线交于另一点.给出以下判断:①以为直径的圆与抛物线准线相离;②直线与直线的斜率乘积为;③设过点,,的圆的圆心坐标为,半径为,则.其中,所有正确判断的序号是()A.①② B.①③ C.②③ D.①②③4.设M是边BC上任意一点,N为AM的中点,若,则的值为()A.1 B. C. D.5.已知复数满足,则()A. B.2 C.4 D.36.已知的内角的对边分别是且,若为最大边,则的取值范围是()A. B. C. D.7.已知函数,方程有四个不同的根,记最大的根的所有取值为集合,则“函数有两个零点”是“”的().A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知抛物线C:,过焦点F的直线l与抛物线C交于A,B两点(A在x轴上方),且满足,则直线l的斜率为()A.1 B.C.2 D.39.设等比数列的前项和为,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件10.二项式展开式中,项的系数为()A. B. C. D.11.已知抛物线的焦点为,对称轴与准线的交点为,为上任意一点,若,则()A.30° B.45° C.60° D.75°12.设,若函数在区间上有三个零点,则实数的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若变量x,y满足:,且满足,则参数t的取值范围为_______.14.在的展开式中,的系数等于__.15.某陶瓷厂准备烧制甲、乙、丙三件不同的工艺品,制作过程必须先后经过两次烧制,当第一次烧制合格后方可进入第二次烧制,再次烧制过程相互独立.根据该厂现有的技术水平,经过第一次烧制后,甲、乙、丙三件产品合格的概率依次为0.5、0.6、0.4,经过第二次烧制后,甲、乙、丙三件产品合格的概率依次为0.6、0.5、0.75;则第一次烧制后恰有一件产品合格的概率为________;经过前后两次烧制后,合格工艺品的件数为,则随机变量的期望为________.16.已知双曲线的左、右焦点和点为某个等腰三角形的三个顶点,则双曲线C的离心率为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的数列的前项和为,且,(,且)(1)求数列的通项公式;(2)证明:当时,18.(12分)已知函数.当时,求不等式的解集;,,求a的取值范围.19.(12分)如图,四棱锥的底面为直角梯形,,,,底面,且,为的中点.(1)证明:;(2)设点是线段上的动点,当直线与直线所成的角最小时,求三棱锥的体积.20.(12分)如图所示的几何体中,,四边形为正方形,四边形为梯形,,,,为中点.(1)证明:;(2)求二面角的余弦值.21.(12分)为践行“绿水青山就是金山银山”的发展理念和提高生态环境的保护意识,高二年级准备成立一个环境保护兴趣小组.该年级理科班有男生400人,女生200人;文科班有男生100人,女生300人.现按男、女用分层抽样从理科生中抽取6人,按男、女分层抽样从文科生中抽取4人,组成环境保护兴趣小组,再从这10人的兴趣小组中抽出4人参加学校的环保知识竞赛.(1)设事件为“选出的这4个人中要求有两个男生两个女生,而且这两个男生必须文、理科生都有”,求事件发生的概率;(2)用表示抽取的4人中文科女生的人数,求的分布列和数学期望.22.(10分)已知函数,其中.(1)函数在处的切线与直线垂直,求实数的值;(2)若函数在定义域上有两个极值点,且.①求实数的取值范围;②求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
联立直线方程与椭圆方程,解得和的坐标,然后利用向量垂直的坐标表示可得,由离心率定义可得结果.【详解】由,得,所以,.由题意知,所以,.因为,所以,所以.所以,所以,故选:A.【点睛】本题考查了直线与椭圆的交点,考查了向量垂直的坐标表示,考查了椭圆的离心率公式,属于基础题.2.A【解析】
用转化的思想求出中不等式的解集,再利用并集的定义求解即可.【详解】解:由集合,解得,则故选:.【点睛】本题考查了并集及其运算,分式不等式的解法,熟练掌握并集的定义是解本题的关键.属于基础题.3.D【解析】
对于①,利用抛物线的定义,利用可判断;对于②,设直线的方程为,与抛物线联立,用坐标表示直线与直线的斜率乘积,即可判断;对于③,将代入抛物线的方程可得,,从而,,利用韦达定理可得,再由,可用m表示,线段的中垂线与轴的交点(即圆心)横坐标为,可得a,即可判断.【详解】如图,设为抛物线的焦点,以线段为直径的圆为,则圆心为线段的中点.设,到准线的距离分别为,,的半径为,点到准线的距离为,显然,,三点不共线,则.所以①正确.由题意可设直线的方程为,代入抛物线的方程,有.设点,的坐标分别为,,则,.所以.则直线与直线的斜率乘积为.所以②正确.将代入抛物线的方程可得,,从而,.根据抛物线的对称性可知,,两点关于轴对称,所以过点,,的圆的圆心在轴上.由上,有,,则.所以,线段的中垂线与轴的交点(即圆心)横坐标为,所以.于是,,代入,,得,所以.所以③正确.故选:D【点睛】本题考查了抛物线的性质综合,考查了学生综合分析,转化划归,数形结合,数学运算的能力,属于较难题.4.B【解析】
设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.5.A【解析】
由复数除法求出,再由模的定义计算出模.【详解】.故选:A.【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题.6.C【解析】
由,化简得到的值,根据余弦定理和基本不等式,即可求解.【详解】由,可得,可得,通分得,整理得,所以,因为为三角形的最大角,所以,又由余弦定理,当且仅当时,等号成立,所以,即,又由,所以的取值范围是.故选:C.【点睛】本题主要考查了代数式的化简,余弦定理,以及基本不等式的综合应用,试题难度较大,属于中档试题,着重考查了推理与运算能力.7.A【解析】
作出函数的图象,得到,把函数有零点转化为与在(2,4]上有交点,利用导数求出切线斜率,即可求得的取值范围,再根据充分、必要条件的定义即可判断.【详解】作出函数的图象如图,由图可知,,函数有2个零点,即有两个不同的根,也就是与在上有2个交点,则的最小值为;设过原点的直线与的切点为,斜率为,则切线方程为,把代入,可得,即,∴切线斜率为,∴k的取值范围是,∴函数有两个零点”是“”的充分不必要条件,故选A.【点睛】本题主要考查了函数零点的判定,考查数学转化思想方法与数形结合的解题思想方法,训练了利用导数研究过曲线上某点处的切线方程,试题有一定的综合性,属于中档题.8.B【解析】
设直线的方程为代入抛物线方程,利用韦达定理可得,,由可知所以可得代入化简求得参数,即可求得结果.【详解】设,(,).易知直线l的斜率存在且不为0,设为,则直线l的方程为.与抛物线方程联立得,所以,.因为,所以,得,所以,即,,所以.故选:B.【点睛】本题考查直线与抛物线的位置关系,考查韦达定理及向量的坐标之间的关系,考查计算能力,属于中档题.9.C【解析】
根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.10.D【解析】
写出二项式的通项公式,再分析的系数求解即可.【详解】二项式展开式的通项为,令,得,故项的系数为.故选:D【点睛】本题主要考查了二项式定理的运算,属于基础题.11.C【解析】
如图所示:作垂直于准线交准线于,则,故,得到答案.【详解】如图所示:作垂直于准线交准线于,则,在中,,故,即.故选:.【点睛】本题考查了抛物线中角度的计算,意在考查学生的计算能力和转化能力.12.D【解析】令,可得.在坐标系内画出函数的图象(如图所示).当时,.由得.设过原点的直线与函数的图象切于点,则有,解得.所以当直线与函数的图象切时.又当直线经过点时,有,解得.结合图象可得当直线与函数的图象有3个交点时,实数的取值范围是.即函数在区间上有三个零点时,实数的取值范围是.选D.点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据变量x,y满足:,画出可行域,由,解得直线过定点,直线绕定点旋转与可行域有交点即可,再结合图象利用斜率求解.【详解】由变量x,y满足:,画出可行域如图所示阴影部分,由,整理得,由,解得,所以直线过定点,由,解得,由,解得,要使,则与可行域有交点,当时,满足条件,当时,直线得斜率应该不小于AC,而不大于AB,即或,解得,且,综上:参数t的取值范围为.故答案为:【点睛】本题主要考查线性规划的应用,还考查了转化运算求解的能力,属于中档题.14.7【解析】
由题,得,令,即可得到本题答案.【详解】由题,得,令,得x的系数.故答案为:7【点睛】本题主要考查二项式定理的应用,属基础题.15.0.380.9【解析】
考虑恰有一件的三种情况直接计算得到概率,随机变量的可能取值为,计算得到概率,再计算数学期望得到答案.【详解】第一次烧制后恰有一件产品合格的概率为:.甲、乙、丙三件产品合格的概率分别为:,,.故随机变量的可能取值为,故;;;.故.故答案为:0.38;0.9.【点睛】本题考查了概率的计算,数学期望,意在考查学生的计算能力和应用能力.16.【解析】
由等腰三角形及双曲线的对称性可知或,进而利用两点间距离公式求解即可.【详解】由题设双曲线的左、右焦点分别为,,因为左、右焦点和点为某个等腰三角形的三个顶点,当时,,由可得,等式两边同除可得,解得(舍);当时,,由可得,等式两边同除可得,解得,故答案为:【点睛】本题考查求双曲线的离心率,考查双曲线的几何性质的应用,考查分类讨论思想.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)见证明【解析】
(1)由题意将递推关系式整理为关于与的关系式,求得前n项和然后确定通项公式即可;(2)由题意结合通项公式的特征放缩之后裂项求和即可证得题中的不等式.【详解】(1)由,得,即,所以数列是以为首项,以为公差的等差数列,所以,即,当时,,当时,,也满足上式,所以;(2)当时,,所以【点睛】给出与的递推关系,求an,常用思路是:一是利用转化为an的递推关系,再求其通项公式;二是转化为Sn的递推关系,先求出Sn与n之间的关系,再求an.18.(1);(2).【解析】
(1)当时,,①当时,,令,即,解得,②当时,,显然成立,所以,③当时,,令,即,解得,综上所述,不等式的解集为.(2)因为,因为,有成立,所以只需,解得,所以a的取值范围为.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.19.(1)见解析;(2).【解析】
(1)要证明,只需证明平面即可;(2)以C为原点,分别以的方向为轴、轴、轴的正方向,建立空间直角坐标系,利用向量法求,并求其最大值从而确定出使问题得到解决.【详解】(1)连结AC、AE,由已知,四边形ABCE为正方形,则①,因为底面,则②,由①②知平面,所以.(2)以C为原点,建立如图所示的空间直角坐标系,则,,,,所以,,,设,,则,所以,设,则,所以当,即时,取最大值,从而取最小值,即直线与直线所成的角最小,此时,则,因为,,则平面,从而M到平面的距离,所以.【点睛】本题考查线面垂直证线线垂直、异面直线直线所成角计算、换元法求函数最值以及等体积法求三棱锥的体积,考查的内容较多,计算量较大,解决此类问题最关键是准确写出点的坐标,是一道中档题.20.(1)见解析;(2)【解析】
(1)取的中点,结合三角形中位线和长度关系,为平行四边形,进而得到,根据线面平行判定定理可证得结论;(2)以,,为,,轴建立空间直角坐标系,分别求得两面的法向量,求得法向量夹角的余弦值;根据二面角为锐角确定最终二面角的余弦值;【详解】(1)取的中点,连结,因为为中点,,,所以,,∴为平行四边形,所以,又因为,所以;(2)由题及(1)易知,,两两垂直,所以以,,为,,轴建立空间直角坐标系,则,,,,,,易知面的法向量为设面的法向量为则可得所以,如图可知二面角为锐角,所以余弦值为【点睛】本题考查立体几何中直线与平面平行关系的证明、空间向量法求解二面角,正确求解法向量是解题的关键,属于中档题.21.(1);(2)见解析【解析】
(1)按分层抽样得抽取了理科男生4人,女生2人,文科男生1人,女生3人,再利用古典概型求解即可(2)由超几何分布求解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年庆阳如何考货运从业资格证
- 2025年东莞道路运输从业资格证考试
- 2025年西藏货运从业资格考试题目
- 叉车应急事故现场演练
- 手术室放射防护培训
- 停车场操作规范样本
- 软件开发服务合作合同管理要点
- 商业步行街广告位租赁协议
- 博物馆门窗维护服务协议
- 2025农村信用社农户联保借款合同
- 医疗卫生部门传染病转诊流程
- 危重患者气道管理
- 探索·鄱阳湖智慧树知到期末考试答案章节答案2024年江西师范大学
- 2024年天津城市运营发展有限公司招聘笔试冲刺题(带答案解析)
- 班级预防校园欺凌排查表
- B737NG 机型执照试题集
- 手术室组长竞聘演讲
- 高中体育-篮球-单手肩上投篮教学设计学情分析教材分析课后反思
- 中国肿瘤整合诊治指南(CACA)-胃癌智慧树知到期末考试答案章节答案2024年温州医科大学
- 市场营销学实践总结
- HG-T 2737-2023 非金属化工设备 丙烯腈-丁二烯-苯乙烯、聚氯乙烯、均聚聚丙烯、聚偏氟乙烯和玻璃纤维增强聚丙烯球阀
评论
0/150
提交评论