版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球 B.摸出的是3个黑球C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球2.将抛物线通过一次平移可得到抛物线.对这一平移过程描述正确的是()A.沿x轴向右平移3个单位长度 B.沿x轴向左平移3个单位长度C.沿y轴向上平移3个单位长度 D.沿y轴向下平移3个单位长度3.从长度分别为1,3,5,7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.4.如图,⊙O的弦CD与直径AB交于点P,PB=1cm,AP=5cm,∠APC=30°,则弦CD的长为()A.4cm B.5cm C.cm D.cm5.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为()A.70° B.55° C.45° D.35°6.如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B. C. D.7.如图,PA是⊙O的切线,切点为A,PO的延长线交⊙O于点B,连接AB,若∠B=25°,则∠P的度数为()A.25° B.40° C.45° D.50°8.如图,CD⊥x轴,垂足为D,CO,CD分别交双曲线y=于点A,B,若OA=AC,△OCB的面积为6,则k的值为()A.2 B.4 C.6 D.89.用配方法解一元二次方程时,原方程可变形为()A. B. C. D.10.一个袋中有黑球个,白球若干,小明从袋中随机一次摸出个球,记下其黑球的数目,再把它们放回,搅匀后重复上述过程次,发现共有黑球个.由此估计袋中的白球个数是()A.40个 B.38个 C.36个 D.34个11.若,则()A. B. C. D.12.一件产品原来每件的成本是1000元,在市场售价不变的情况下,由于连续两次降低成本,现在利润每件增加了190元,则平均每次降低成本的()A. B. C. D.二、填空题(每题4分,共24分)13.如图,圆心角都是90°的扇形OAB与扇形OCD叠放在一起,OA=3,OC=1,分别连接AC、BD,则图中阴影部分的面积为_____.14.在平面直角坐标系中,点为原点,抛物线与轴交于点,以为一边向左作正方形,点为抛物线的顶点,当是锐角三角形时,的取值范围是__________.15.在平面直角坐标系中,点P(﹣2,1)关于原点的对称点P′的坐标是_____________.16.若质量抽检时任抽一件西服成品为合格品的概率为0.9,则200件西服中大约有_____件合格品.17.已知以线段AC为对角线的四边形ABCD(它的四个顶点A,B,C,D按顺时针方向排列)中,AB=BC=CD,∠ABC=100°,∠CAD=40°,则∠BCD的度数为____________.18.如图,某河堤的横截面是梯形,,迎水面长26,且斜坡的坡比(即)为12:5,则河堤的高为__________.三、解答题(共78分)19.(8分)如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在线段BA上以每秒3cm的速度点A运动,同时动点N从点C出发,在线段CB上以每秒2cm的速度向点B运动,其中一点到达终点后,另一点也停止运动.运动时间为t秒,连接MN.(1)填空:BM=cm.BN=cm.(用含t的代数式表示)(2)若△BMN与△ABC相似,求t的值;(3)连接AN,CM,若AN⊥CM,求t的值.20.(8分)如图,△ABC和△DEF均为正三角形,D,E分别在AB,BC上,请找出一个与△DBE相似的三角形并证明.21.(8分)如图,已知⊙O的直径d=10,弦AB与弦CD平行,它们之间的距离为7,且AB=6,求弦CD的长.22.(10分)东方市在铁路礼堂举办大型扶贫消费市场,张老师购买5斤芒果和2斤哈密瓜共花费64元;李老师购买3斤芒果和1斤哈密瓜共花费36元.求一斤芒果和一斤哈密瓜的售价各是多少元?23.(10分)某市某幼儿园“六一”期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏.主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)?(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)24.(10分)解下列一元二次方程.(1)x2+x-6=1;(2)2(x-1)2-8=1.25.(12分)(1)解方程:x2+4x﹣1=0(2)计算:cos30°+sin45°26.方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,且三个顶点的坐标分别为A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)画出△ABC关于原点O对称的△A1B1C1,并写出点C1的坐标;(1)作出△ABC绕着点A逆时针方向旋转90°后得到的△AB1C1.
参考答案一、选择题(每题4分,共48分)1、A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.2、A【分析】分别确定出两个抛物线的顶点坐标,再根据左减右加,确定平移方向即可得解.【详解】解:抛物线的顶点坐标为(0,−2),
抛物线的顶点坐标为(3,-2),
所以,向右平移3个单位,可以由抛物线平移得到抛物线.
故选:A.【点睛】本题考查了二次函数图象与几何变换,利用点的平移规律左减右加,上加下减解答是解题的关键.3、C【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,
其中构成三角形的有3,5,7共1种,∴能构成三角形的概率为:,故选C.点睛:此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.4、D【分析】作OH⊥CD于H,连接OC,如图,先计算出OB=3,OP=2,再在Rt△OPH中利用含30度的直角三角形三边的关系得到OH=1,则可根据勾股定理计算出CH,然后根据垂径定理得到CH=DH,从而得到CD的长.【详解】解:作OH⊥CD于H,连接OC,如图,∵PB=1,AP=5,∴OB=3,OP=2,在Rt△OPH中,∵∠OPH=30°,∴OH=OP=1,在Rt△OCH中,CH=,∵OH⊥CD,∴CH=DH=,∴CD=2CH=.故选:D.【点睛】本题考查了含30度角的直角三角形的性质、勾股定理以及垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.5、B【分析】根据圆周角定理可得出∠AOB的度数,再由OA=OB,可求出∠ABO的度数【详解】连接OA、OC,∵∠BAC=15°,∠ADC=20°,∴∠AOB=2(∠ADC+∠BAC)=70°,∵OA=OB(都是半径),∴∠ABO=∠OAB=(180°﹣∠AOB)=55°.故选B.【点睛】本题考查了圆周角定理,注意掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半.6、B【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD与BC间的位置关系,根据平行线分线段成比例定理,得结论.【详解】连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD,∴∠ODB=∠CBD,∴OD∥CB,∴,即,∴CD=.故选B.【点睛】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.7、B【分析】连接OA,由圆周角定理得,∠AOP=2∠B=50°,根据切线定理可得∠OAP=90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.8、B【分析】设A(m,n),根据题意则C(2m,2n),根据系数k的几何意义,k=mn,△BOD面积为k,即可得到S△ODC=•2m•2n=2mn=2k,即可得到6+k=2k,解得k=1.【详解】设A(m,n),∵CD⊥x轴,垂足为D,OA=AC,∴C(2m,2n),∵点A,B在双曲线y=上,∴k=mn,∴S△ODC=×2m×2n=2mn=2k,∵△OCB的面积为6,△BOD面积为k,∴6+k=2k,解得k=1,故选:B.【点睛】本题考查了反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.9、B【解析】试题分析:,,.故选B.考点:解一元二次方程-配方法.10、D【分析】同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,根据题中条件求出黑球的频率再近似估计白球数量.【详解】解:设袋中的白球的个数是个,根据题意得:解得故选:D【点睛】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.11、B【解析】根据合并性质解答即可,对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.【详解】,,,故选:.【点睛】本题考查了比例的性质,熟练掌握合比性质是解答本题的关键.合比性质:在一个比例等式中,第一个比例的前后项之和与第一个比例的后项的比,等于第二个比例的前后项之和与第二个比例的后项的比.12、A【分析】设平均每次降低成本的x,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设平均每次降低成本的x,
根据题意得:1000-1000(1-x)2=190,
解得:x1=0.1=10%,x2=1.9(舍去),
则平均每次降低成本的10%,
故选A.【点睛】此题考查了一元二次方程的应用,弄清题意是解本题的关键.二、填空题(每题4分,共24分)13、2π【解析】通过分析图可知:△ODB经过旋转90°后能够和△OCA重合(证全等也可),因此图中阴影部分的面积=扇形AOB的面积-扇形COD的面积,所以S阴=π×(9-1)=2π.【详解】由图可知,将△OAC顺时针旋转90°后可与△ODB重合,∴S△OAC=S△OBD;因此S阴影=S扇形OAB+S△OBD-S△OAC-S扇形OCD=S扇形OAB-S扇形OCD=π×(9-1)=2π.故答案为2π.【点睛】本题中阴影部分的面积可以看作是扇形AOB与扇形COD的面积差,求不规则的图形的面积,可以转化为几个规则图形的面积的和或差来求.14、或【分析】首先由抛物线解析式求出顶点A的坐标,然后再由对称轴可判定△AHP为等腰直角三角形,故当是锐角三角形时,,即可得出的取值范围.【详解】∵∴顶点A的坐标为令PB与对称轴相交于点H,如图所示∴PH=AH,即△AHP为等腰直角三角形∴当是锐角三角形时,,∴BP=OP,P(0,c)∴或故答案为或.【点睛】此题主要考查二次函数图象与几何图形的综合运用,解题关键是找出临界点直角三角形,即可得出取值范围.15、(2,﹣1)【详解】解:点P(﹣2,1)关于原点的对称点P′的坐标是(2,﹣1).故答案为(2,﹣1).【点睛】本题考查了关于原点对称的点的坐标的特点,注意掌握两个点关于原点对称时,它们的坐标符号相反.16、1.【分析】用总数×抽检时任抽一件西服成品为合格品的概率即可得出答案.【详解】200×0.9=1,答:200件西服中大约有1件合格品故答案为:1.【点睛】本题主要考查合格率问题,掌握合格产品数=总数×合格率是解题的关键.17、80°或100°【解析】作出图形,证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,分类讨论可得解.【详解】∵AB=BC,∠ABC=100°,∴∠1=∠2=∠CAD=40°,∴AD∥BC.点D的位置有两种情况:如图①,过点C分别作CE⊥AB于E,CF⊥AD于F,∵∠1=∠CAD,∴CE=CF,在Rt△ACE与Rt△ACF中,,∴Rt△ACE≌Rt△ACF,∴∠ACE=∠ACF.在Rt△BCE与Rt△DCF中,,∴Rt△BCE≌Rt△DCF,∴∠BCE=∠DCF,∴∠ACD=∠2=40°,∴∠BCD=80°;如图②,∵AD′∥BC,AB=CD′,∴四边形ABCD′是等腰梯形,∴∠BCD′=∠ABC=100°,综上所述,∠BCD=80°或100°,故答案为80°或100°.【点睛】本题考查了全等三角形的判定与性质,等腰梯形的判定与性质,本题关键是证明Rt△ACE≌Rt△ACF,Rt△BCE≌Rt△DCF,同时注意分类思想的应用.18、24cm【分析】根据坡比(即)为12:5,设BE=12x,AE=5x,因为AB=26cm,根据勾股定理列出方程即可求解.【详解】解:设BE=12x,AE=5x,∵AB=26cm,∴∴BE=2×12=24cm故答案为:24cm.【点睛】本题主要考查的是坡比以及勾股定理,找出图中的直角三角形在根据勾股定理列出方程即可求解.三、解答题(共78分)19、(1)3t,8-2t;(2)△BMN与△ABC相似时,t的值为s或s;(3)t的值为.【分析】(1)根据“路程=时间×速度”和线段的和与差即可得;(2)由两三角形相似得出对应线段成比例,再结合题(1)的结果,联立求解即可;(3)如图(见解析),过点M作于点D,易证,利用相似三角形的性质求出CD和DM的长,再证,从而可建立一个关于t的等式,求解即可得.【详解】(1)由“路程=时间×速度”得:故答案为:;(2)当时,,即,解得当时,,即,解得综上所述,与相似时,t的值为或;(3)如图,过点M作于点D又∵∠B=∠B,解得:或(不符题意,舍去),经检验是方程的解,故t的值为.【点睛】本题考查了勾股定理、相似三角形的判定定理与性质,通过作辅助线,构造相似三角形是解题关键.20、△GAD或△ECH或△GFH,证△GAD∽△DBE.见解析.【分析】根据已知及相似三角形的判定方法即可找到存在的相似三角形.【详解】解:△ECH,△GFH,△GAD均与△DBE相似,任选一对即可.如选△GAD证明如下:证明:∵△ABC与△EFD均为等边三角形,∴∠A=∠B=60°.又∵∠BDG=∠A+∠AGD,即∠BDE+60°=∠AGD+60°,∴∠BDE=∠AGD.∴△DBE∽△GAD.点睛:等量关系证明两对应角相等是关键,考查了三角形的性质及相似三角形的判定.21、1【解析】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,根据垂径定理得到根据AB∥CD,得到点M、O、N在同一条直线上,在Rt△AOM中,根据勾股定理求出进而求出ON,在Rt△CON中,根据勾股定理求出根据垂径定理即可求出弦CD的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OA、OC,则∵AB∥CD,∴点M、O、N在同一条直线上,在Rt△AOM中,∴ON=MN﹣OM=3,在Rt△CON中,∵ON⊥CD,∴CD=2CN=1.【点睛】考查勾股定理以及垂径定理,作出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度别墅区交通安全管理合同
- 2024年度人寿保险合同
- 《传染病培训》课件2
- 2024年度化工产品采购代理服务合同
- 2024年度版权授权使用合同:某软件公司授予某电商平台使用权2篇
- 天津市劳动合同范本
- 《铁路货运组织》课件
- 《寒风吹彻》课件
- 2024年度品牌代理与分销合同3篇
- 2024年度医疗健康数据管理与分析合同
- 北京市第七中学2024-2025学年七年级上学期期中检测数学试卷
- 江苏省常州五校2024-2025学年九年级上学期英语期中试卷(无答案)
- 小说版权合同范例
- 采暖季洁净型煤采购技术服务投标方案(技术方案)
- 2023年西安电力中心医院招聘考试真题
- 施工机械设备配置方案
- 【译林】八上英语专题02 短文首字母填空20篇
- 2024-2030年中国无氧铜杆铜丝行业运行状况发展趋势分析报告
- 《电气控制系统设计与装调》教案 项目五 任务一小车自动往返控制线路设计与安装(位置开关)
- 新教师培训课件
- 爱心公益慈善活动招商方案
评论
0/150
提交评论