福建省泉州市第八中学2022年数学九年级第一学期期末学业水平测试试题含解析_第1页
福建省泉州市第八中学2022年数学九年级第一学期期末学业水平测试试题含解析_第2页
福建省泉州市第八中学2022年数学九年级第一学期期末学业水平测试试题含解析_第3页
福建省泉州市第八中学2022年数学九年级第一学期期末学业水平测试试题含解析_第4页
福建省泉州市第八中学2022年数学九年级第一学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.一元二次方程的解为()A. B., C., D.,2.在中,点在线段上,请添加一个条件使,则下列条件中一定正确的是()A. B.C. D.3.表给出了二次函数y=ax2+bx+c(a≠0)的自变量x与函数值y的部分对应值:那么方程ax2+bx+c=0的一个根的近似值可能是()x…11.11.21.31.4…y…﹣1﹣0.490.040.591.16…A.1.08 B.1.18 C.1.28 D.1.384.下列二次函数的开口方向一定向上的是()A.y=-3x2-1 B.y=-x2+1 C.y=x2+3 D.y=-x2-55.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,AD=5,BD=2,则DE的长为()A. B. C. D.6.下列函数中,是反比例函数的是()A. B. C. D.7.如图是一个正八边形,向其内部投一枚飞镖,投中阴影部分的概率是()A. B. C. D.8.如果反比例函数y=kx的图像经过点(-3,-A.第一、二象限 B.第一、三象限C.第二、四象限 D.第三、四象限9.如图,直线y=2x与双曲线在第一象限的交点为A,过点A作AB⊥x轴于B,将△ABO绕点O旋转90°,得到△A′B′O,则点A′的坐标为()A.(1.0) B.(1.0)或(﹣1.0)C.(2.0)或(0,﹣2) D.(﹣2.1)或(2,﹣1)10.下列物体的光线所形成的投影是平行投影的是()A.台灯 B.手电筒 C.太阳 D.路灯11.顺次连接四边形ABCD各边的中点,所得四边形是()A.平行四边形B.对角线互相垂直的四边形C.矩形D.菱形12.在直角三角形ABC中,已知∠C=90°,∠A=40°,BC=3,则AC=()A.3sin40°B.3sin50°二、填空题(每题4分,共24分)13.在平面直角坐标系中,点(4,-5)关于原点的对称点的坐标是________.14.如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为_________.15.将边长分别为,,的三个正方形按如图所示的方式排列,则图中阴影部分的面积为______.16.=___17.如图,已知AD∥BC,AC和BD相交于点O,若△AOD的面积为2,△BOC的面积为18,BC=6,则AD的长为_____.18.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.三、解答题(共78分)19.(8分)如图,点C在以AB为直径的圆上,D在线段AB的延长线上,且CA=CD,BC=BD.(1)求证:CD与⊙O相切;(2)若AB=8,求图中阴影部分的面积.20.(8分)已知关于x的一元二次方程有两个实数根x1,x1.(1)求实数k的取值范围;(1)是否存在实数k使得成立?若存在,请求出k的值;若不存在,请说明理由.21.(8分)已知二次函数的图象经过点.(1)当时,若点在该二次函数的图象上,求该二次函数的表达式;(2)已知点,在该二次函数的图象上,求的取值范围;(3)当时,若该二次函数的图象与直线交于点,,且,求的值.22.(10分)如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(1)证明:△ABD≌△BCE;(2)证明:△ABE∽△FAE;(3)若AF=7,DF=1,求BD的长.23.(10分)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)24.(10分)如图,在正方形ABCD中,点M、N分别在AB、BC上,AB=4,AM=1,BN=.(1)求证:ΔADM∽ΔBMN;(2)求∠DMN的度数.25.(12分)已知关于x的方程x2+(2m+1)x+m(m+1)=1.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=1,求代数式m2+m﹣5的值.26.如图,抛物线y=-x2+bx+c与x轴交于点A(-1,0),与y轴交于点B(0,2),直线y=x-1与y轴交于点C,与x轴交于点D,点P是线段CD上方的抛物线上一动点,过点P作PF垂直x轴于点F,交直线CD于点E,(1)求抛物线的解析式;(2)设点P的横坐标为m,当线段PE的长取最大值时,解答以下问题.①求此时m的值.②设Q是平面直角坐标系内一点,是否存在以P、Q、C、D为顶点的平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】通过因式分解法解一元二次方程即可得出答案.【详解】∴或∴,故选C【点睛】本题主要考查解一元二次方程,掌握因式分解法是解题的关键.2、B【分析】根据相似三角形的判定方法进行判断,要注意相似三角形的对应边和对应角.【详解】解:如图,在中,∠B的夹边为AB和BC,在中,∠B的夹边为AB和BD,∴若要,则,即故选B.【点睛】此题主要考查的是相似三角形的判定,正确地判断出相似三角形的对应边和对应角是解答此题的关键.3、B【分析】观察表中数据得到抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),然后根据抛物线与x轴的交点问题可得到方程ax2+bx+c=0一个根的近似值.【详解】∵x=1.1时,y=ax2+bx+c=﹣0.49;x=1.2时,y=ax2+bx+c=0.04;∴抛物线y=ax2+bx+c与x轴的一个交点在(1.1,0)和点(1.2,0)之间,更靠近点(1.2,0),∴方程ax2+bx+c=0有一个根约为1.1.故选:B.【点睛】本题主要考查抛物线与x轴的交点问题,掌握二次函数的图象与x轴的交点的横坐标与一元二次方程的根的关系,是解题的关键.4、C【解析】根据二次函数图象的开口方向与二次项系数的关系逐一判断即可.【详解】解:A.y=-3x2-1中,﹣3<0,二次函数图象的开口向下,故A不符合题意;B.y=-x2+1中,-<0,二次函数图象的开口向下,故B不符合题意;C.y=x2+3中,>0,二次函数图象的开口向上,故C符合题意;D.y=-x2-5中,-1<0,二次函数图象的开口向下,故D不符合题意;故选:C.【点睛】此题考查的是判断二次函数图像的开口方向,掌握二次函数图象的开口方向与二次项系数的关系是解决此题的关键.5、D【分析】根据AD平分∠BAC,可得∠BAD=∠DAC,再利用同弧所对的圆周角相等,求证△ABD△BED,利用其对应边成比例可得,然后将已知数值代入即可求出DE的长.【详解】解:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DBC=∠DAC(同弧所对的圆周角相等),∴∠DBC=∠BAD,∴△ABD△BED,∴,∴DE=故选D.【点睛】本题考查圆周角定理以及相似三角形的判定与性质,根据其定理进行分析.6、B【解析】根据反比例函数的一般形式即可判断.【详解】A、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;B、是一次函数,正确;C、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误;D、不符合反比例函数的一般形式y=,(k≠0)的形式,选项错误.故选:B.【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k≠0)转化为y=kx−1(k≠0)的形式.7、B【分析】根据几何概率的求法:飞镖落在阴影部分的概率就是阴影区域的面积与总面积的比值.根据正八边形性质求出阴影部分面积占总面积之比,进而可得到答案【详解】解:由正八边形性质可知∠EFB=∠FED=135°,故可作出正方形.则是等腰直角三角形,设,则,,正八边形的边长是.则正方形的边长是.则正八边形的面积是:,阴影部分的面积是:.飞镖落在阴影部分的概率是,故选:.【点睛】本题考查了几何概率的求法:一般用阴影区域表示所求事件(A);首先根据题意将代数关系用面积表示出来;然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.同时也考查了正多边形的计算,根据正八边形性质构造正方形求面积比是关键.8、B【解析】根据反比例函数图象上点的坐标特点可得k=12,再根据反比例函数的性质可得函数图象位于第一、三象限.【详解】∵反比例函数y=kx的图象经过点(-3,-4∴k=-3×(-4)=12,∵12>0,∴该函数图象位于第一、三象限,故选:B.【点睛】此题主要考查了反比例函数的性质,关键是根据反比例函数图象上点的坐标特点求出k的值.9、D【解析】试题分析:联立直线与反比例解析式得:,消去y得到:x2=1,解得:x=1或﹣1.∴y=2或﹣2.∴A(1,2),即AB=2,OB=1,根据题意画出相应的图形,如图所示,分顺时针和逆时针旋转两种情况:根据旋转的性质,可得A′B′=A′′B′′=AB=2,OB′=OB′′=OB=1,根据图形得:点A′的坐标为(﹣2,1)或(2,﹣1).故选D.10、C【解析】太阳相对地球较远且大,其发出的光线可认为是平行光线.【详解】台灯、手电筒、路灯发出的光线是由点光源发出的光线,所形成的投影是中心投影;太阳相对地球较远且大,其发出的光线可认为是平行光线.故选C【点睛】本题主要考查了中心投影、平行投影的概念.11、A【解析】试题分析:连接原四边形的一条对角线,根据中位线定理,可得新四边形的一组对边平行且等于对角线的一半,即一组对边平行且相等.则新四边形是平行四边形.解:如图,根据中位线定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四边形EFGH是平行四边形.故选A.考点:中点四边形.12、D【解析】试题分析:∵∠C=90°,∠A=40°,∴∠B=50°.∵BC=3,tanB=ACBC故选D.考点:1.直角三角形两锐角的关系;2.锐角三角函数定义.二、填空题(每题4分,共24分)13、(-4,5)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【详解】解:点(4,-5)关于原点的对称点的坐标是(-4,5),故答案为:(-4,5).【点睛】此题主要考查了关于原点对称的点的坐标特点,关键是掌握点的坐标的变化规律.14、4【分析】作AE⊥x轴于点E,BD⊥x轴于点D得出△OBD∽△OAE,根据面积比等于相似比的平方结合反比例函数的几何意义求出,再利用条件“AO=AC”得出,进而分别求出和相减即可得出答案.【详解】作AE⊥x轴于点E,BD⊥x轴于点D∴△OBD∽△OAE∴根据反比例函数的几何意义可得:,∴∵AO=AC∴OE=EC∴∴,∴故答案为4.【点睛】本题考查的是反比例函数与几何的综合,难度系数较大,需要熟练掌握反比例函数的几何意义.15、【分析】首先对图中各点进行标注,阴影部分的面积等于正方形BEFL的面积减去梯形BENK的面积,再利用相似三角形的性质求出BK、EN的长从而求出梯形的面积即可得出答案.【详解】解:如图所示,∵四边形MEGH为正方形,∴∴△AEN△AHG∴NE:GH=AE:AG∵AE=2+3=5,AG=2+3+4=9,GH=4∴NE:4=5:9∴NE=同理可求BK=梯形BENK的面积:∴阴影部分的面积:故答案为:.【点睛】本题主要考查的知识点是图形面积的计算以及相似三角形判定及其性质,根据相似的性质求出相应的边长是解答本题的关键.16、【分析】原式利用特殊角的三角函数值计算即可得到结果.【详解】解:原式==.故答案为:.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17、1【分析】根据AD∥BC得出△AOD∽△BOC,然后利用相似三角形的面积之比可求出相似比,再根据相似比即可求出AD的长度.【详解】解:∵AD∥BC,∴△AOD∽△BOC,∵△AOD的面积为1,△BOC的面积为18,∴△AOD与△BOC的面积之比为1:9,∴,∵BC=6,∴AD=1.故答案为:1.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键.18、1【分析】(1)根据,求出扇形弧长,即圆锥底面周长;(2)根据,即,求圆锥底面半径.【详解】该圆锥的底面半径=故答案为:1.【点睛】圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.三、解答题(共78分)19、(1)见解析;(2)【分析】(1)连接OC,由圆周角定理得出∠ACB=90°,即∠ACO+∠BCO=90°,由等腰三角形的性质得出∠A=∠D=∠BCD,∠ACO=∠A,得出∠ACO=∠BCD,证出∠DCO=90°,则CD⊥OC,即可得出结论;

(2)证明OB=OC=BC,得出∠BOC=60°,∠D=30°,由直角三角形的性质得出CD=OC=4,图中阴影部分的面积=△OCD的面积-扇形OBC的面积,代入数据计算即可.【详解】证明:连接OC,如图所示:

∵AB是⊙O的直径,

∴∠ACB=90°,即∠ACO+∠BCO=90°,

∵CA=CD,BC=BD,

∴∠A=∠D=∠BCD,

又∵OA=OC,

∴∠ACO=∠A,

∴∠ACO=∠BCD,

∴∠BCD+∠BCO=∠ACO+∠BCO=90°,即∠DCO=90°,

∴CD⊥OC,

∵OC是⊙O的半径,

∴CD与⊙O相切;

(2)解:∵AB=8,

∴OC=OB=4,

由(1)得:∠A=∠D=∠BCD,

∴∠OBC=∠BCD+∠D=2∠D,

∵∠BOC=2∠A,

∴∠BOC=∠OBC,

∴OC=BC,

∵OB=OC,

∴OB=OC=BC,

∴∠BOC=60°,

∵∠OCD=90°,

∴∠D=90°-60°=30°,

∴CD=OC=4,

∴图中阴影部分的面积=△OCD的面积-扇形OBC的面积=×4×4-=8-π.【点睛】本题考查了切线的判定、圆周角定理、等腰三角形的判定与性质、等边三角形的判定与性质、含30°角的直角三角形的性质、扇形面积公式、三角形面积公式等知识;熟练掌握切线的判定和圆周角定理是解题的关键.20、(1)(1)不存在【分析】(1)由题意可得△≥0,即[﹣(1k+1)]1﹣4(k1+1k)≥0,通过解该不等式即可求得k的取值范围;(1)假设存在实数k使得x1·x1-x11-x11≥0成立.由根与系数的关系可得x1+x1=1k+1,x1·x1=k1+1k,然后利用完全平方公式可以把x1·x1-x11-x11≥0转化为3x1·x1-(x1+x1)1≥0的形式,通过解不等式可以求得k的值.【详解】(1)∵原方程有两个实数根,∴△≥0即[﹣(1k+1)]1﹣4(k1+1k)≥0,∴4k1+4k+1﹣4k1﹣8k≥0,∴1﹣4k≥0,∴k≤,∴当k≤时,原方程有两个实数根;(1)假设存在实数k使得x1·x1-x11-x11≥0成立,∵x1,x1是原方程的两根,∴x1+x1=1k+1,x1·x1=k1+1k,由x1·x1-x11-x11≥0,得3x1·x1-(x1+x1)1≥0∴3(k1+1k)﹣(1k+1)1≥0,整理得:﹣(k﹣1)1≥0,∴只有当k=1时,上式才能成立;又∵由(1)知k≤,∴不存在实数k使得x1·x1-x11-x11≥0成立.21、(1);(2);(3)或2.【分析】(1)将和点,代入解析式中,即可求出该二次函数的表达式;(2)根据点M和点N的坐标即可求出该抛物线的对称轴,再根据二次函数的开口方向和二次函数的增加性,即可列出关于t的不等式,从而求出的取值范围;(3)将和点代入解析式中,可得,然后将二次函数的解析式和一次函数的解析式联立,即可求出点P、Q的坐标,最后利用平面直角坐标系中任意两点之间的距离公式即可求出的值.【详解】解:(1)∵,∴二次函数的表达式为.∵点,在二次函数的图象上,∴.解得.∴该抛物线的函数表达式为.(2)∵点,在该二次函数的图象上,∴该二次函数的对称轴是直线.∵抛物线开口向上,,,在该二次函数图象上,且,∴点,分别落在点的左侧和右侧,∴.解得的取值范围是.(3)当时,的图象经过点,∴,即.∴二次函数表达式为.根据二次函数的图象与直线交于点,由,解得,.∴点的横坐标分别是1,.不妨设点的横坐标是1,则点与点重合,即的坐标是,如下图所示∴点的坐标是,即的坐标是.∵,∴根据平面直角坐标系中任意两点之间的距离公式,可得.解得或2.【点睛】此题考查的是二次函数与一次函数的综合大题,掌握用待定系数法求二次函数的解析式、二次函数的增减性、求二次函数与一次函数的交点坐标和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.22、(1)证明见解析;(2)证明见解析;(3)BD=2.【分析】(1)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;

(2)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF=∠BEA,由此可以证明△AEF∽△BEA;

(3)由△ABD≌△BCE得:∠BAD=∠FBD,又∠BDF=∠ADB,由此可以证明△BDF∽△ADB,然后可以得到,即BD2=AD•DF=(AF+DF)•DF.【详解】解:(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中∵,∴△ABD≌△BCE(SAS);(2)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(3)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.【点睛】本题考查的知识点是相似三角形的判定与性质,全等三角形的判定,等边三角形的性质,解题的关键是熟练的掌握相似三角形的判定与性质,全等三角形的判定,等边三角形的性质.23、11.3m.【分析】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.【详解】连接OC,求出OC和OE,根据勾股定理求出CE,根据垂径定理求出CD即可.【解答】解:如图,连接OC,AB交CD于E,由题意知:AB=1.6+6.4+4=12,所以OC=OB=6,OE=OB﹣BE=6﹣4=2,由题意可知:AB⊥CD,∵AB过O,∴CD=2CE,在Rt△OCE中,由勾股定理得:CE=,∴CD=2CE=8≈11.3m,所以路面CD的宽度为11.3m.【点睛】本题考查了垂径定理和勾股定理,能求出CE的长是解此题的关键,注意:垂直于弦的直径平分这条弦.24、(1)见解析;(2)90°【分析】(1)根据,,即可推出,再加上∠A=∠B=90°,就可以得出△ADM∽△BMN;(2)由△ADM∽△BMN就可以得出∠ADM=∠BMN,又∠ADM+∠AMD=90°,就可以得出∠AMD+∠BMN=90°,从而得出∠DMN的度数.【详解】(1)∵AD=4,AM=1∴MB=AB-AM=4-1=3∵,∴又∵∠A=∠B=90°∴ΔADM∽ΔBMN(2)∵ΔADM∽ΔBMN∴∠ADM=∠BMN∴∠ADM+∠AMD=90°∴∠AMD+∠BMN=90°∴∠DMN=180°-∠BMN-∠AMD=90°【点睛】本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,解答时证明△ADM∽△BMN是解答的关键.25、(1)方程总有两个不相等的实数根;(2)-2.【分析】(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论