版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省厦门市金尚中学2024年八年级下册数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为()A.(2,1)B.(﹣2,﹣1)C.(﹣2,1)D.(2,﹣1)2.如图,在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,点D,E分别在直角边AC,BC上,且∠DOE=90°,DE交OC于点P,则下列结论:(1)AD+BE=AC;(2)AD2+BE2=DE2;(3)△ABC的面积等于四边形CDOE面积的2倍;(4)OD=OE,其中正确的结论有()A. B. C. D.3.如果一个三角形的三边长分别为6,a,b,且(a+b)(a-b)=36,那么这个三角形的形状为()A.锐角三角形 B.钝角三角形C.直角三角形 D.等边三角形4.如图,四边形ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则四边形ABCD的周长为()A.32 B.16 C.8 D.45.如图,平行四边形ABCD中,若∠A=60°,则∠C的度数为()A.120° B.60° C.30° D.15°6.若一次函数y=m-1x-3的图象经过第二、三、四象限,则A.m>0 B.m<0 C.m>1 D.m<17.下列各组数中是勾股数的为()A.1、2、3 B.4、5、6 C.3、4、5 D.7、8、98.若代数式有意义,则x的取值范围是()A.x≥1 B.x≥0 C.x>1 D.x>09.要使代数式有意义,则的取值范围是A. B. C. D.10.某学校要种植一块面积为100m2的长方形草坪,要求两边长均不小于5m,则草坪的一边长为y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是()A. B. C. D.二、填空题(每小题3分,共24分)11.2-1=_____________12.若关于x的分式方程当的解为正数,那么字母a的取值范围是_____.13.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发___小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是___.14.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.15.把抛物线yx2向左平移1个单位,再向下平移2个单位,所得抛物线的解析式为_____.16.不等式5﹣2x>﹣3的解集是_____.17.若x是的整数部分,则的值是.18.直线与轴的交点坐标___________三、解答题(共66分)19.(10分)如图,抛物线与轴交于两点和与轴交于点动点沿的边以每秒个单位长度的速度由起点向终点运动,过点作轴的垂线,交的另一边于点将沿折叠,使点落在点处,设点的运动时间为秒.(1)求抛物线的解析式;(2)N为抛物线上的点(点不与点重合)且满足直接写出点的坐标;(3)是否存在某一时刻,使的面积最大,若存在,求出的值和最大面积;若不存在,请说明理由.20.(6分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E.(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.21.(6分)如图,已知,点在上,点在上.(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);(2)连结,求证四边形是菱形.22.(8分)如图1.在边长为10的正方形中,点在边上移动(点不与点,重合),的垂直平分线分别交,于点,,将正方形沿所在直线折叠,则点的对应点为点,点落在点处,与交于点,(1)若,求的长;(2)随着点在边上位置的变化,的度数是否发生变化?若变化,请说明理由;若不变,请求出的度数;(3)随着点在边上位置的变化,点在边上位置也发生变化,若点恰好为的中点(如图2),求的长.23.(8分)如图,已知等边△ABC,点D在直线BC上,连接AD,作∠ADN=60°,直线DN交射线AB于点E,过点C作CF∥AB交直线DN于点F.(1)当点D在线段BC上,∠NDB为锐角时,如图①.①判断∠1与∠2的大小关系,并说明理由;②过点F作FM∥BC交射线AB于点M,求证:CF+BE=CD;(2)①当点D在线段BC的延长线上,∠NDB为锐角时,如图②,请直接写出线段CF,BE,CD之间的数量关系;②当点D在线段CB的延长线上,∠NDB为钝角或直角时,如图③,请直接写出线段CF,BE,CD之间的数量关系.24.(8分)如图,为线段上一动点,分别过点作,,连接.已知,设.(1)用含的代数式表示的值;(2)探究:当点满足什么条件时,的值最小?最小值是多少?(3)根据(2)中的结论,请构造图形求代数式的最小值.25.(10分)某汽车运输公司根据实际需要计划购买大、中型两种客车共20辆,已知大型客车每辆62万元,中型客车每辆40万元,设购买大型客车x(辆),购车总费用为y(万元).(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若购买中型客车的数量少于大型客车的数量,请你给出一种费用最省的方案,并求出该方案所需费用.26.(10分)如图,已知平行四边形ABCD的对角线AC和BD交于点O,且AC+BD=28,BC=12,求△AOD的周长.
参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选:C.点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.2、D【解析】
由等腰直角三角形的性质可得AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO,由“ASA”可证△ADO≌△CEO,△CDO≌△BEO,由全等三角形的性质可依次判断.【详解】∵在等腰直角△ABC中,∠ACB=90°,O是斜边AB的中点,∴AC=BC,CO=AO=BO,∠ACO=∠BCO=∠A=∠B=45°,CO⊥AO∵∠DOE=90°,∴∠COD+∠COE=90°,且∠AOD+∠COD=90°∴∠COE=∠AOD,且AO=CO,∠A=∠ACO=45°,∴△ADO≌△CEO(ASA)∴AD=CE,OD=OE,故④正确,同理可得:△CDO≌△BEO∴CD=BE,∴AC=AD+CD=AD+BE,故①正确,在Rt△CDE中,CD2+CE2=DE2,∴AD2+BE2=DE2,故②正确,∵△ADO≌△CEO,△CDO≌△BEO∴S△ADO=S△CEO,S△CDO=S△BEO,∴△ABC的面积等于四边形CDOE面积的2倍;故③正确,综上所述:正确的结论有①②③④,故选D.【点睛】本题考查了全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,熟练运用等腰直角三角形的性质是本题的关键.3、C【解析】
先根据平方差公式对已知等式进行化简,再根据勾股定理的逆定理进行判定即可.【详解】解:∵(a+b)(a-b)=36,∴,∴,∴三角形是直角三角形,故选C.【点睛】本题主要考查了勾股定理的逆定理,掌握勾股定理的逆定理是解题的关键.4、B【解析】
首先证明OE=12BC,再由AE+EO=4【详解】解:∵四边形ABCD是平行四边形,
∴OA=OC,
∵AE=EB,
∴OE=∵AE+EO=4,
∴2AE+2EO=8,
∴AB+BC=8,
∴平行四边形ABCD的周长=2×8=16,
故选:B【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.5、B【解析】
直接利用平行四边形的对角相等即可得出答案.【详解】∵四边形ABCD是平行四边形∴∠C=∠A=60°故选:B.【点睛】此题主要考查了平行四边形的性质,熟记平行四边形的对角性质是解题关键.6、D【解析】
根据一次函数的性质即可求出m的取值范围.【详解】∵一次函数的图象经过第二、三、四象限,∴m-1<0∴m<1.故选:D【点睛】本题考查一次函数,解题的关键是熟练运用一次函数的性质,本题属于基础题型.7、C【解析】
根据勾股定理的逆定理分别对各组数据进行检验即可.【详解】解:A.∵12+22=5≠32=9,∴不是勾股数,故A错误;B.∵42+52=41≠62=36,∴不是勾股数,故B错误;C.∵32+42=25=52=25,∴是勾股数,故C正确;D.∵72+82=113≠92=81,∴不是勾股数,故D错误.故选C.【点睛】本题比较简单,只要对各组数据进行检验,看各组数据是否符合勾股定理的逆定理即可.8、A【解析】
二次根式有意义的条件是被开方数为非负数.【详解】解:∵二次根式有意义,∴x-1≥0,∴x≥1,故选A.【点睛】本题考查了二次根式有意义的条件.9、C【解析】
根据二次根式的被开方数非负得到关于x的不等式,解不等式即得答案.【详解】解:根据题意,得,解得,.故选C.【点睛】本题考查了二次根式有意义的条件,熟知二次根式被开方数非负是解题的关键.10、C【解析】
由草坪面积为100m2,可知x、y存在关系y=,然后根据两边长均不小于5m,可得x≥5、y≥5,则x≤20,故选:C.二、填空题(每小题3分,共24分)11、【解析】
根据负指数幂的运算法则即可解答.【详解】原式=2-1=.【点睛】本题考查了负指数幂的运算法则,牢记负指数幂的运算法则是解答本题的关键.12、a>1且a≠3【解析】
首先根据题意求解x的值,再根据题意可得分式方程的解大于0,注意分式方程的增根问题.【详解】解:去分母得:3x﹣a=x﹣1,解得:x=,由分式方程的解为正数,得到>0,≠1,解得:a>1且a≠3,故答案为:a>1且a≠3【点睛】本题主要考查分式方程的解参数问题,这类题目特步要注意分式方程的增根问题.13、2,0≤x≤2或≤x≤2.【解析】
(2)由图象直接可得答案;(2)根据图象求出甲乙的函数解析式,再求出方程组的解集即可解答【详解】(2)由函数图象可知,乙比甲晚出发2小时.故答案为2.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤2;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(2,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20②由①②得,∴,故≤x≤2符合题意.故答案为0≤x≤2或≤x≤2.【点睛】此题考查函数的图象和二元一次方程组的解,解题关键在于看懂图中数据14、1【解析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.15、y=(x+1)1-1【解析】
先由平移方式确定新抛物线的顶点坐标.然后可得出顶点式的解析式。【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1).
可设新抛物线的解析式为:y=(x-h)1+k,
代入得:y=(x+1)1-1.故答案为:y=(x+1)1-1【点睛】此题考查了二次函数图象与几何变换以及一般式转化顶点式,正确将一般式转化为顶点式是解题关键.16、x<1【解析】
根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】解:﹣2x>﹣3﹣5,﹣2x>﹣8,x<1,故答案为x<1.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.17、1【解析】
3<<4x=3==1故答案为1.18、(0,-3)【解析】
求出当x=0时,y的值,由此即可得出直线与y轴的交点坐标.【详解】解:由题意得:当x=0时,y=2×0-3=-3,即直线与y轴交点坐标为(0,-3),故答案为(0,-3).【点睛】本题主要考查一次函数与坐标轴的交点,比较简单,令x=0即可.三、解答题(共66分)19、(1);(2)(-5,1)或(,-1)或(,-1);(1)存在,时,有最大值为.【解析】
(1)把A(-1,0),B(1,0)代入y=ax2+bx+1,得到关于a、b的二元一次方程组,解方程组即可得到结论;(2)由抛物线解析式求出C(0,1),根据同底等高的两个三角形面积相等,可知N点纵坐标的绝对值等于1,将y=±1分别代入二次函数解析式,求出x的值,进而得到N点的坐标;(1)由于点D在y轴的右侧时,过点作轴的垂线,无法与的另一边相交,所以点D在y轴左侧,根据题意求出直线AC的解析式及E,D,F的坐标,然后根据三角形面积求得与t的函数关系式,然后利用二次函数的性质求最值即可.【详解】解:(1)把A(-1,0),B(1,0)代入y=ax2+bx+1中,得,解得,∴抛物线的解析式为:,(2)∵抛物线与y轴交于点C,∴C(0,1).∵N为抛物线上的点(点不与点重合)且S△NAB=S△ABC,∴设N(x,y),则|y|=1.把y=1代入,得,解得x=0或-5,x=0时N与C点重合,舍去,∴N(-5,1);把y=-1代入,得,解得∴N(,-1)或(,-1).综上所述,所求N点的坐标为(-5,1)或(,-1)或(,-1);(1)存在.由题意可知,∵过点作轴的垂线,交的另一边于点∴点D必在y轴的左侧.∵AD=2t,∴由折叠性质可知DF=AD=2t,∴OF=1-4t,∴D(2t-1,0),∵设直线AC的解析式为:,将A(-1,0)和C(0,1)代入解析式得,解得∴直线AC的解析式为:∴E(2t-1,2t).∴∵-4<0时,有最大值为.【点睛】本题是二次函数综合题,其中涉及到利用待定系数法求直线、抛物线的解析式,二次函数的性质,三角形的面积等知识.利用数形结合是解题的关键.20、(1)证明见解析(2)2【解析】试题分析:由角平分线得出,得出,由圆周角定理得出证出再由三角形的外角性质得出即可得出由得:,得出由圆周角定理得出是直径,由勾股定理求出即可得出外接圆的半径.试题解析:(1)证明:平分又平分连接,是直径.平分∴半径为21、(1)详见解析;(2)详见解析.【解析】
(1)按照尺规作图的步骤作出图形即可;
(2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.【详解】解:(1)如图,就是所求作的的垂直平分线,(2)证明:∵四边形ABCD为平行四边形,
∴AD∥BC,
∴∠AFE=∠CEF,
∵EF垂直平分AC,
∴EA=EC,EF⊥AC,
∴∠CEF=∠AEF,
∴∠AFE=∠AEF,
∴AE=AF,
∴AC垂直平分EF,
∴四边形AECF是菱形.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.22、(1);(2)不变,45°;(3).【解析】
(1)由翻折可知:EB=EM,设EB=EM=x,在Rt△AEM中,根据EM2=AM2+AE2,构建方程即可解决问题.
(2)如图1-1中,作BH⊥MN于H.利用全等三角形的性质证明∠ABM=∠MBH,∠CBP=∠HBP,即可解决问题.
(3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,在Rt△DPM中,利用勾股定理构建方程求出x,再在Rt△AEM中,利用勾股定理求出BE,EM,AE,再证明AM=EG即可解决问题.【详解】(1)如图1中,
∵四边形ABCD是正方形,
∴∠A=90°,AB=AD=10,
由翻折可知:EB=EM,设EB=EM=x,
在Rt△AEM中,∵EM2=AM2+AE2,
∴x2=42+(10-x)2,
∴x=.
∴BE=.
(2)如图1-1中,作BH⊥MN于H.
∵EB=EM,
∴∠EBM=∠EMB,
∵∠EMN=∠EBC=90°,
∴∠NMB=∠MBC,
∵AD∥BC,
∴∠AMB=∠MBC,
∴∠AMB=∠BMN,
∵BA⊥MA,BH⊥MN,
∴BA=BH,
∵∠A=∠BHM=90°,BM=BM,BA=BH,
∴Rt△BAM≌△BHM(HL),
∴∠ABM=∠MBH,
同法可证:∠CBP=∠HBP,
∵∠ABC=90°,
∴∠MBP=∠MBH+∠PBH=∠ABH+∠CBH=∠ABC=45°.
∴∠PBM=45°.
(3)如图2中,作FG⊥AB于G.则四边形BCFG是矩形,FG=BC,CF=BG.设AM=x,
∵PC=PD=5,
∴PM+x=5,DM=10-x,
在Rt△PDM中,(x+5)2=(10-x)2+25,
∴x=,
∴AM=,
设EB=EM=m,
在Rt△AEM中,则有m2=(10-m)2+()2,
∴m=,
∴AE=10-,
∵AM⊥EF,
∴∠ABM+∠GEF=90°,∠GEF+∠EFG=90°,
∴∠ABM=∠EFG,
∵FG=BC=AB,∠A=∠FGE=90°,
∴△BAM≌△FGE(AAS),
∴EG=AM=,
∴CF=BG=AB-AE-EG=10-.【点睛】此题考查四边形综合题、正方形的性质、全等三角形的判定和性质、勾股定理,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.23、(1)①∠1=∠2,理由见解析,②证明见解析;(2)①BE=CD+CF,②CF=CD+BE.【解析】
(1)①由等边三角形的性质和∠ADN=60°,易得∠1+∠ADC=120°,∠2+∠ADC=120°,所以∠1=∠2;②由条件易得四边形BCFM为平行四边形,得到BM=CF,BC=MF,再证明△MEF≌△CDA,得到ME=CD,利用等量代换即可得证;(2)①过F作FH∥BC,易得四边形BCFH为平行四边形,可得HF=BC,BH=CF,然后证明△EFH≌△DAC,得到CD=EH,利用等量代换即可得BE=CD+CF;②过E作EG∥BC,易得四边形BCGE为平行四边形,可得EG=BC,BE=CG,然后证明△EFG≌△ADC,得到CD=FG,利用等量代换即可得CF=CD+BE.【详解】(1)①∠1=∠2,理由如下:∵△ABC为等边三角形∴∠ACB=60°∴∠2+∠ADC=120°又∵∠AND=60°∴∠1+∠ADC=120°∴∠1=∠2②∵MF∥BC,CF∥BM∴四边形BCFM为平行四边形∴BM=CF,BC=MF=AC,∵BC∥MF∴∠1=∠EFM=∠2,∠EMF=∠ABC=60°在△MEF和△CDA中,∵∠EFM=∠2,MF=AC,∠EMF=∠ACD=60°∴△MEF≌△CDA(ASA)∴ME=CD∴ME=BM+BE=CF+BE=CD即CF+BE=CD(2)①BE=CD+CF,证明如下:如图,过F作FH∥BC,∵CF∥BH,FH∥BC,∴四边形BCFH为平行四边形∴HF=BC=AC,BH=CF∵△ABC为等边三角形∴∠ABC=∠ACB=60°∴∠CAD+∠ADC=60°,∠DBE=120°,∠ACD=120°又∵∠AND=60°,即∠BDN+∠ADC=60°∴∠CAD=∠BDN∵BD∥HF∴∠HFE=∠BDN=∠CAD,∠EHF=∠ACD=120°在△EFH和△DAC中,∵∠EHF=∠ACD,HF=AC,∠HFE=∠CAD∴△EFH≌△DAC(ASA)∴EH=CD∴BE=BH+EH=CF+CD即BE=CD+CF;②CF=CD+BE,证明如下:如图所示,过E作EG∥BC,∵EG∥BC,CG∥BE∴四边形BCGE为平行四边形,∴EG=BC=AC,BE=CG,∵∠AND=60°,∠ACD=60°∴∠ADC+∠CDE=120°,∠ADC+∠DAC=120°∴∠CDE=∠DAC又∵CD∥EG∴∠GEF=∠CDE=∠DAC,∠EGF=∠DCF∵AE∥CF∴∠DCF=∠ABC=60°∴∠EGF=∠ABC=60°在△EFG和△ADC中,∵∠GEF=∠DAC,EG=AC,∠EGF=∠ACD=60°∴△EFG≌△ADC(ASA)∴FG=CD∴CF=CG+FG=BE+CD即CF=C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 诊所医疗器械自查报告
- 事业单位考试(社会科学专技类B类)综合应用能力试题与参考答案
- 学风建设融入“三全育人”综合改革探究
- 2024年建筑工程合同财务指南
- 2024年建筑施工合同详细内容
- 9A Unit4 Growing Up (选拔卷)-【单元测试】(译林版)(解析版)
- 2024年战略合作意向:电商平台合作协议
- 2024城市更新!旧区改造项目合作协议
- 2024年建筑维护与保养合同
- 2024年弹簧垫圈购销协议
- 管理线性规划入门形考答案
- 人教版小学五年级英语上册第一、二、三单元复习Recycle教案
- 常用钢材牌号及化学成分表
- 高大墙体混凝土浇筑技术交底(非常详细)
- 建设项目全过程工程咨询管理实施规划
- 现代控制理论课后习题答案
- 地方应用型高校新工科专业建设面临的问题与对策
- 水平定向钻施工方案
- 雷诺现象及雷诺氏病PPT课件
- 码头报批流程图
- IE 标准工时(完整版)
评论
0/150
提交评论