江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题含解析_第1页
江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题含解析_第2页
江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题含解析_第3页
江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题含解析_第4页
江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省工业园区青剑湖学校2024年八年级数学第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.72.如图图形中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.3.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分4.已知直角三角形的两条直角边的长分别是1,,则斜边长为()A.1 B. C.2 D.35.如图四边形是菱形,顶点在轴上,,点在第一象限,且菱形的面积为,坐标为,则顶点的坐标为()A. B. C. D.6.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2012﹣2013赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥487.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.108.矩形具有而菱形不一定具有的性质是()A.对角相等 B.对边相等 C.对角线相等 D.对角线互相垂直9.如图,在矩形ABCD中,对角线AC,BD相交于点O,若OA=2,则BD的长为()A.4 B.3 C.2 D.110.下列各组数,不能作为直角三角形的三边长的是()A.3,4,5 B.1,1, C.2,3,4 D.6,8,10二、填空题(每小题3分,共24分)11.以下是小明化简分式的过程.解:原式①②③④(1)小明的解答过程在第_______步开始出错;(2)请你帮助小明写出正确的解答过程,并计算当时分式的值.12.若,则__________.13.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.14.如图,一张三角形纸片,其中,,,现小林将纸片做三次折叠:第一次使点落在处;将纸片展平做第二次折叠,使点若在处;再将纸片展平做第三次折叠,使点落在处,这三次折叠的折痕长依次记为,则的大小关系是(从大到小)__________.15.如图,矩形的面积为,平分,交于,沿将折叠,点的对应点刚好落在矩形两条对角线的交点处.则的面积为________.16.因式分解:___.17.若代数式在实数范围内有意义,则的取值范围为____.18.如图,我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,点A、B、C、D分别是“蛋圆”与坐标轴的交点,AB为半圆的直径,且抛物线的解析式为,则半圆圆心M的坐标为______.三、解答题(共66分)19.(10分)小明遇到这样一个问题:如图,点是中点,,求证:.小明通过探究发现,如图,过点作.交的延长线于点,再证明,使问题得到解决。(1)根据阅读材料回答:的条件是______(填“”“”“”“”或“”)(2)写出小明的证明过程;参考小明思考问题的方法,解答下列问题:(3)已知,中,是边上一点,,,分别在,上,连接.点是线段上点,连接并延长交于点,.如图,当时,探究的值,并说明理由:20.(6分)某发电厂共有6台发电机发电,每台的发电量为300万千瓦/月.该厂计划从今年7月开始到年底,对6台发电机各进行一次改造升级.每月改造升级1台,这台发电机当月停机,并于次月再投入发电,每台发电机改造升级后,每月的发电量将比原来提高20%.已知每台发电机改造升级的费用为20万元.将今年7月份作为第1个月开始往后算,该厂第x(x是正整数)个月的发电量设为y(万千瓦).(1)求该厂第2个月的发电量及今年下半年的总发电量;(2)求y关于x的函数关系式;(3)如果每发1千瓦电可以盈利0.04元,那么从第1个月开始,至少要到第几个月,这期间该厂的发电盈利扣除发电机改造升级费用后的盈利总额ω1(万元),将超过同样时间内发电机不作改造升级时的发电盈利总额ω2(万元)?21.(6分)某校2500名学生参加“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,从中抽取该校八年级(1)班全体同学捐献图书的数量,绘制如下统计图:请你根据以上统计图中的信息,解答下列问题:(1)补全条形统计图;(2)八(1)班全体同学所捐图书的中位数和众数分别是多少?(3)估计该校2500名学生共捐书多少册?22.(8分)如图,在平行四边形中,E、F分别为边、的中点,是平行四边形的对角线,交的延长线于点G.(1)求证:四边形是平行四边形.(2)若,求的度数.23.(8分)如图,在▱ABCD中,E,F是对角线AC上的两点,且AF=CE.求证:DE∥BF.24.(8分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.已知.(1)观察发现如图①,若点是和的角平分线的交点,过点作分别交、于、,填空:与、的数量关系是________________________________________.(2)猜想论证如图②,若点是外角和的角平分线的交点,其他条件不变,填:与、的数量关系是_____________________________________.(3)类比探究如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.25.(10分)如图,矩形OABC在平面直角坐标系中的位置如图所示,点B(﹣3,5),点D在线段AO上,且AD=2OD,点E在线段AB上,当△CDE的周长最小时,求点E的坐标.26.(10分)某体育用品商场采购员要到厂家批发购买篮球和排球共个,篮球个数不少于排球个数,付款总额不得超过元,已知两种球厂的批发价和商场的零售价如下表.设该商场采购个篮球.品名厂家批发价/元/个商场零售价/元/个篮球排球(1)求该商场采购费用(单位:元)与(单位:个)的函数关系式,并写出自变最的取值范围:(2)该商场把这个球全都以零售价售出,求商场能获得的最大利润;(3)受原材料和工艺调整等因素影响,采购员实际采购时,低球的批发价上调了元/个,同时排球批发价下调了元/个.该体有用品商场决定不调整商场零售价,发现将个球全部卖出获得的最低利润是元,求的值.

参考答案一、选择题(每小题3分,共30分)1、B【解析】分析:根据平均数的定义计算即可;详解:由题意(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题2、D【解析】

根据轴对称图形的定义和中心对称图形的定义逐一判断即可.【详解】解:A.是轴对称图形,不是中心对称图形.故本选项不符合题意;B.不是轴对称图形,是中心对称图形.故本选项不符合题意;C.是轴对称图形,不是中心对称图形.故本选项不符合题意;D.是轴对称图形,也是中心对称图形.故本选项符合题意.故选:D.【点睛】此题考查的是轴对称图形的识别和中心对称图形的识别,掌握轴对称图形的定义和中心对称图形的定义是解决此题的关键.3、B【解析】

根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.4、C【解析】

根据勾股定理进行计算,即可求得结果.【详解】解:直角三角形的两条直角边的长分别为1,,则斜边长==2;故选C.【点睛】本题考查了勾股定理;熟练运用勾股定理进行求解是解决问题的关键.5、C【解析】

过点C作x轴的垂线,垂足为E,由面积可求得CE的长,在Rt△BCE中可求得BE的长,可求得AE,结合A点坐标可求得AO,可求出OE,可求得C点坐标.【详解】如图,过点C作x轴的垂线,垂足为E,∵S菱形ABCD=20,∴AB⋅CE=20,即5CE=20,∴CE=4,在Rt△BCE中,BC=AB=5,CE=4,∴BE=3,∴AE=AB+BE=5+3=8.又∵A(−2,0),∴OA=2,∴OE=AE−OA=8−2=6,∴C(6,4),故选C.【点睛】此题考查菱形的性质,坐标与图形性质,解题关键在于作辅助线6、A【解析】这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,胜场得分2x分,输场得分(32﹣x)分,根据胜场得分+输场得分≥48可得不等式.解:这个队在将要举行的比赛中胜x场,则要输(32﹣x)场,由题意得:2x+(32﹣x)≥48,故选A.7、C【解析】

根据等腰三角形的三线合一得出∠ADB=90°,再根据勾股定理得出BD的长,即可得出BC的长.【详解】在△ABC中,AB=AC,AD是∠BAC的平分线,ADBC,BC=2BD.∠ADB=90°在Rt△ABD中,根据勾股定理得:BD===4BC=2BD=2×4=8.故选C.【点睛】本题考查了等腰三角形的性质及勾股定理,熟练掌握性质定理是解题的关键.8、C【解析】

根据菱形和矩形的性质即可判断.【详解】解:因为矩形的性质:对角相等、对边相等、对角线相等;菱形的性质:对角相等、对边相等、对角线互相垂直.所以矩形具有而菱形不一定具有的性质是对角线相等.故选:C.【点睛】本题主要考查矩形和菱形的性质,掌握矩形和菱形的性质是解题的关键.9、A【解析】

因为矩形的对角线相等且互相平分,已知OA=2,则AC=2OA=4,又BD=AC,故可求.【详解】解:∵四边形ABCD是矩形∴OC=OA,BD=AC又∵OA=2,∴AC=OA+OC=2OA=4∴BD=AC=4故选:A.【点睛】本题考查矩形的对角线的性质.熟练掌握矩形对角线相等且互相平分是解题的关键.10、C【解析】

根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【详解】A.3+4=25=5,故能构成直角三角形,故本选项错误;B.1+1=2=(),故能构成直角三角形,故本选项错误;C.2+3=13≠4,故不能构成直角三角形,故本选项正确;D.6+8=100=10,故能构成直角三角形,故本选项错误。故选C.【点睛】此题考查勾股定理的逆定理,解题关键在于掌握其定义二、填空题(每小题3分,共24分)11、(1)②;(2)2【解析】

根据分式的混合运算法则进行计算即可.【详解】(1)②,应该是.(2)解:原式=.当时,【点睛】此题考查分式的混合运算,解题关键在于掌握运算法则.12、【解析】

利用设k法,分别将a,b都设出来,再代入中化简即可得出答案.【详解】解:设a=2k,b=5k∴故答案为:.【点睛】本题考查了比例的性质,属于基础知识,比较简单.13、1【解析】

根据平行四边形的性质,得△AOE≌△COF.根据全等三角形的性质,得OF=OE,CF=AE.再根据平行四边形的对边相等,得CD=AB,AD=BC,故FC+ED=AE+ED=AD,根据所推出相等关系,可求四边形EFCD的周长.【详解】解:∵四边形ABCD为平行四边形,

∴AO=OC,AD∥BC,

∴∠EAO=∠FCO,

在△AOE和△COF中,,

∴△AOE≌△COF,

∴OF=OE=1.5,CF=AE,

根据平行四边形的对边相等,得

CD=AB=4,AD=BC=5,

故四边形EFCD的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.

故答案为:1.【点睛】本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.14、b>c>a.【解析】

由图1,根据折叠得DE是△ABC的中位线,可得出DE的长,即a的长;由图2,同理可得MN是△ABC的中位线,得出MN的长,即b的长;由图3,根据折叠得:GH是线段AB的垂直平分线,得出AG的长,再利用两角对应相等证△ACB∽△AGH,利用比例式可求GH的长,即c的长.【详解】解:第一次折叠如图1,折痕为DE,由折叠得:AE=EC=AC=×4=2,DE⊥AC∵∠ACB=90°∴DE∥BC∴a=DE=BC=×3=,第二次折叠如图2,折痕为MN,由折叠得:BN=NC=BC=×3=,MN⊥BC∵∠ACB=90°∴MN∥AC∴b=MN=AC=×4=2,第三次折叠如图3,折痕为GH,由勾股定理得:AB==5由折叠得:AG=BG=AB=,GH⊥AB∴∠AGH=90°∵∠A=∠A,∠AGH=∠ACB,∴△ACB∽△AGH∴,即,∴GH=,即c=,∵2>>,∴b>c>a,故答案为:b>c>a.【点睛】本题考查了折叠的问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题的关键是明确折痕是所折线段的垂直平分线,准确找出中位线,利用中位线的性质得出对应折痕的长,没有中位线的可以考虑用三角形相似来解决.15、【解析】

先证明△AEB≌△FEB≌△DEF,从而可知S△ABE=S△DAB,即可求得△ABE的面积.【详解】解:由折叠的性质可知:△AEB≌△FEB∴∠EFB=∠EAB=90°∵ABCD为矩形∴DF=FB∴EF垂直平分DB∴ED=EB在△DEF和△BEF中DF=BFEF=EFED=EB∴△DEF≌△BEF∴△AEB≌△FEB≌△DEF∴.故答案为1.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB≌△FEB≌△DEF是解题的关键.16、2a(a-2)【解析】

17、且【解析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据二次根式有意义,分式有意义得:且≠0,即且.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.18、(1,0).【解析】

当y=0时,,解得:x1=﹣1,x2=3,故A(﹣1,0),B(3,0),则AB的中点为:(1,0).故答案为(1,0).三、解答题(共66分)19、(1)AAS或ASA,(2)见详解.(3)2.【解析】

根据三角形判定的条件即可得到结果;由已作辅助线,可知,BF∥CD,再根据平行线的性质可得到内错角相等,又有对顶角相等和边相等,故可得证;连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,由D,M,N分别是BF,BC,EF的中点,可知DM是△BCF的中位线,DN是△BEF的中位线,由中位线定理可得DM∥AC,DN∥BE且DN=BE.从而得到∠DMN=∠G,∠DNM=∠BPM,又因为.,可证得△DMN为等边三角形,所以DN=MN,等量代换后即可得到的值.【详解】解:(1)AAS或ASA(详解见(2))(2)证明:过点作.交的延长线于点,则∠F=∠D,∠FBE=∠C.∵点是中点,∴BE=EC.在△BEF和△CED中∴△BEF≌△CED(AAS).∴BF=CD.∵,∴,∴BF=AB,∴.(3)连接BF,取BF的中点D,连接DM,DN,MP与CA的延长线相交于点G,∵D,M,N分别是BF,BC,EF的中点,∴DM是△BCF的中位线,DN是△BEF的中位线,∴DM∥AC,DN∥BE且DN=BE.∴∠DMN=∠G,∠DNM=∠BPM,∵且,∴∠G=∠BPM=60°.∴∠DNM=∠DMN=60°.∴△DMN为等边三角形,∴MN=DN.∵DN=BE,∴=2.【点睛】本题主要考查了三角形的全等的判定,等边三角形的判定及性质,三角形的中位线定理及其应用,解题的关键是正确作出辅助线,构造三角形的中位线.20、(1)该厂第4个月的发电量为1540万千瓦;今年下半年的总发电量为1万千瓦;(4)4140.(3)3个月【解析】试题分析:(1)由题意可以知道第1个月的发电量是300×5千瓦,第4个月的发电量为300×4+300(1+40%),第3个月的发电量为300×3+300×4×(1+40%),第4个月的发电量为300×4+300×3×(1+40%),第5个月的发电量为300×1+300×4×(1+40%),第4个月的发电量为300×5×(1+40%),将4个月的总电量加起来就可以求出总电量.(4)由总发电量=各台机器的发电量之和根据(1)的结论设y与x之间的关系式为y=kx+b建立方程组求出其解即可.(3)由总利润=发电盈利﹣发电机改造升级费用,分别表示出ω1,ω4,再根据条件建立不等式求出其解即可.试题解析:解:(1)由题意,得第4个月的发电量为:300×4+300(1+40%)=1540千瓦,今年下半年的总发电量为:300×5+1540+300×3+300×4×(1+40%)+300×4+300×3×(1+40%)+300×1+300×4×(1+40%)+300×5×(1+40%)=1500+1540+1440+1480+340+1800=1.答:该厂第4个月的发电量为1540千瓦;今年下半年的总发电量为1千瓦.(4)设y与x之间的关系式为y=kx+b,由题意,得,解得:.∴y关于x的函数关系式为y=40x+1440(1≤x≤4).(3)设到第n个月时ω1>ω4,当n=4时,ω1=1×0.04﹣40×4=474,ω4=300×4×4×0.04=434,ω1>ω4不符合.∴n>4.∴ω1=[1+340×4(n﹣4)]×0.04﹣40×4=84.4n﹣440,ω4=300×4n×0.04=74n.当ω1>ω4时,84.4n﹣440>74n,解之得n>14.7,∴n=3.答:至少要到第3个月ω1超过ω4.考点:1.一次函数和不等式的应用;4.由实际问题列函数关系式.21、(1)见解析;(2)中位数是3本,众数是2本;(3)7850册【解析】

(1)根据捐2本的人数是15人,占30%,即可求出该班学生人数,根据条形统计图求出捐4本的人数为,再画出图形即可;(2)根据中位数的定义求出第25、26个数的平均数即可,根据众数的定义求出出现的次数最多的数即可,(3)先求出八(1)班所捐图书的平均数,再乘以全校总人数2500即可.【详解】解:(1)∵被调查的总人数为15÷30%=50人,∴捐4册的有50﹣(10+15+7+5)=13人,补全图形如下:(2)∵共有50个数,∴八(1)班所捐图书的中位数是(2+4)÷2=3(本),∵2本出现了15次,出现的次数最多,∴众数是2本;(3)∵八(1)班所捐图书的平均数是;(1×10+2×15+4×13+5×7+6×5)÷50=,∴全校2500名学生共捐2500×=7850(本),答:全校2500名学生共捐7850册书.【点睛】本题考查的是条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,用到的知识点是众数、中位数、平均数.22、(1)证明见解析;(2)【解析】

(1)根据平行四边形的性质得出AD∥BC,DC∥AB,DC=AB,推出DF=BE,DF∥BE,根据平行四边形的判定推出即可;(2)先证明四边形AGBD是平行四边形,再证出∠ADB=90°,得到四边形AGBD为矩形,即可得出结论.【详解】解:(1)证明:∵四边形是平行四边形,分别为边的中点,,.∵BE∥DF,∴四边形是平行四边形.(2)∵四边形ABCD是平行四边形,∴AD∥BG,∵AG∥BD,∴四边形AGBD是平行四边形,∵点E是AB的中点,∴AE=BE=AB,∵AE=DE,∴AE=DE=BE,∴∠DAE=∠ADE,∠EDB=∠EBD,∵∠DAE+∠ADE+∠EDB+∠EBD=180°,∴2∠ADE+2∠EDB=180°,∴∠ADE+∠EDB=90°,即∠ADB=90°,∴平行四边形AGBD是矩形.∴∠G=90°.【点睛】本题考查了平行四边形的判定与性质、矩形的判定、等腰三角形的性质;熟练掌握平行四边形的判定与性质是解题的关键.23、证明见解析【解析】

直接连接BD,交AC于点O,利用平行四边形的性质得出OA=OC,OB=OD,进而得出四边形EBFD是平行四边形求出答案即可.【详解】证明:连接BD,交AC于点O.∵四边形ABCD是平行四边形,∴OA=OC,OB=OD.∵AF=CE,∴OF=OE.∴四边形EBFD是平行四边形.∴DE∥BF.【点睛】此题主要考查了平行四边形的判定与性质,正确得出四边形EBFD是平行四边形是解题关键.24、(1);(2);(3)不成立,,证明详见解析.【解析】

(1)根据平行线的性质与角平分线的定义得出

∠EDB=∠EBD

∠FCD=∠FDC

,从而得出

EF

BE

CF

的数量关系;(2)根据平行线的性质与角平分线的定义得出

∠EDB=∠EBD

∠FCD=∠FDC

,从而得出

EF

BE

CF

的数量关系;(3)根据平行线的性质与角平分线的定义得出

EF

BE

CF

的数量关系.【详解】(1)EF=BE+CF.∵

D

∠ABC

∠ACB

的角平分线的交点,∴∠EBD=∠DBC

∠FCD=∠DCB

.∵EF∥BC

,∴∠EDB=∠DBC

∠FDC=∠DCB

.∴

∠EDB=∠EBD

∠FCD=∠FDC

.∴EB=ED

DF=CF

.∴EF=BE+CF

.故本题答案为:

EF=BE+CF

.(2)EF=BE+CF.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论