吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第1页
吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第2页
吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第3页
吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第4页
吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省九台区加工河中学心学校2024届八年级数学第二学期期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A﹣B﹣M方向匀速运动,到M时停止运动,速度为1cm/s.设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图象可以是().A. B.C. D.2.如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种 B.3种 C.2种 D.1种3.如图,在直角△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段AN的长为A.6 B.5 C.4 D.34.关于一次函数,下列结论正确的是()A.随的增大而减小 B.图象经过点(2,1) C.当﹥时,﹥0 D.图象不经过第四象限5.已知实数m、n,若m<n,则下列结论成立的是()A.m﹣3<n﹣3 B.2+m>2+n C. D.﹣3m<﹣3n6.不等式组的整数解有三个,则a的取值范围是()A.﹣1≤a<0 B.﹣1<a≤0 C.﹣1≤a≤0 D.﹣1<a<07.如图,四边形ABCD是菱形,圆O经过点A、C、D,与BC相交于点E,连接AC、AE.若,则()A. B. C. D.8.如图,在矩形中,点的坐标为,则的长是()A. B. C. D.9.如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为()A. B.C. D.10.如图,四边形ABCD中,AB=CD,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF,CE,若DE=BF,则下列结论:①CF=AE;②OE=OF;③四边形ABCD是平行四边形;④图中共有四对全等三角形.其中正确结论的个数是A.4B.3C.2D.1二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,菱形的边在轴上,与交于点(4,2),反比例函数的图象经过点.若将菱形向左平移个单位,使点落在该反比例函数图象上,则的值为_____________.12.若=.则=_____.13.如图,在△ABC中,A,B两点的坐标分别为A(-1,3),B(-2,0),

C(2,2),则△ABC的面积是________

.14.若A(﹣1,y1)、B(﹣1,y1)在y=1x图象上,则y1、y1大小关系是y1_____y115.在□ABCD中,O是对角线的交点,那么____.16.一个多边形截去一个角后,形成新多边形的内角和为2520°,则原多边形边数为_____.17.如图,△ABC的中位线DE=5cm,把△ABC沿DE折叠,使点A落在边BC上的点F处,若A、F两点间的距离是8cm,则△ABC的面积为_____cm1.18.函数为任意实数)的图象必经过定点,则该点坐标为____.三、解答题(共66分)19.(10分)(1)在图中以正方形的格点为顶点,画一个三角形,使三角形的边长分别为、2、;(2)求此三角形的面积及最长边上的高.20.(6分)为了维护国家主权和海洋权力,海监部门对我国领海实行常态化巡航管理,如图,正在执行巡航任务的海监船以每小时30海里的速度向正东方航行,在处测得灯塔在北偏东60°方向上,继续航行后到达处,此时测得灯塔在北偏东30°方向上.(1)求的度数;(2)已知在灯塔的周围15海里内有暗礁,问海监船继续向正东方向航行是否安全?21.(6分)(1)探究新知:如图1,已知与的面积相等,试判断与的位置关系,并说明理由.(2)结论应用:①如图2,点,在反比例函数的图像上,过点作轴,过点作轴,垂足分别为,,连接.试证明:.②若①中的其他条件不变,只改变点,的位置如图3所示,请画出图形,判断与的位置关系并说明理由.22.(8分)已知1<x<2,,则的值是_____.23.(8分)问题:探究函数的图象与性质.小明根据学习函数的经验,对函数的图象与性质进行了研究.下面是小明的研究过程,请补充完成.(1)自变量的取值范围是全体实数,与的几组对应值列表如下:…-4-3-2-104……210n01m34…其中,m=n=;(2)在如图所示的平面直角坐标中,描出以上表中各对对应值为坐标的点,并根据描出的点,画出该函数的图象.(3)观察图象,写出该函数的两条性质.24.(8分)如图,在平面直角坐标系xOy中,一次函y=kx+b的图象经过点A(-2,4),且与正比例函数的图象交于点B(a,2).(1)求a的值及一次函数y=kx+b的解析式;(2)若一次函数y=kx+b的图象与x轴交于点C,且正比例函数y=-x的图象向下平移m(m>0)个单位长度后经过点C,求m的值;(3)直接写出关于x的不等式0<<kx+b的解集.25.(10分)如图,正方形ABCD的边长为4,动点E从点A出发,以每秒2个单位的速度沿A→D→A运动,动点G从点A出发,以每秒1个单位的速度沿A→B运动,当有一个点到达终点时,另一点随之也停止运动.过点G作FG⊥AB交AC于点F.设运动时间为t(单位:秒).以FG为一直角边向右作等腰直角三角形FGH,△FGH与正方形ABCD重叠部分的面积为S.(1)当t=1.5时,S=________;当t=3时,S=________.(2)设DE=y1,AG=y2,在如图所示的网格坐标系中,画出y1与y2关于t的函数图象.并求当t为何值时,四边形DEGF是平行四边形?26.(10分)已知正方形ABCD,P为射线AB上的一点,以BP为边作正方形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上.如图2,连接AC,当P为AB的中点时,判断△ACE的形状,并说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【解析】试题分析:分两种情况:①当0≤t<4时,作OG⊥AB于G,如图1所示,由正方形的性质得出∠B=90°,AD=AB=BC=4cm,AG=BG=OG=AB=2cm,由三角形的面积得出S=AP•OG=t();②当t≥4时,作OG⊥AB于G,如图2所示,S=△OAG的面积+梯形OGBP的面积=×2×2+(2+t﹣4)×2=t();综上所述:面积S()与时间t(s)的关系的图象是过原点的线段.故选A.考点:动点问题的函数图象.2、B【解析】

结合图象根据轴对称图形的概念求解即可.【详解】根据轴对称图形的概念可知,一共有3种涂法,如下图所示:.故选B.【点睛】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【解析】

设,由翻折的性质可知,则,在中利用勾股定理列方程求解即可.【详解】解:设,由翻折的性质可知,则.是BC的中点,.在中,由勾股定理得:,即,解得:..故选:B.【点睛】本题主要考查的是翻折的性质、勾股定理的应用,由翻折的性质得到,,从而列出关于x的方程是解题的关键.4、C【解析】分析:根据k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项的正误;把点(2,1)代入y=3x-1即可判断函数图象不过点(2,1)可判断B选项;当3x-1>0,即x>时,y>0,可判断C选项正误.详解:当k=3>0,图象经过第一、三、四象限,y随x增大而增大即可判断A,D选项错误;当x=2时,y=2×2-1=3≠1,故选项B错误;当3x-1>0,即x>时,y>0,,所以C选项正确;故选C.点睛:本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方;当b=0,图象经过原点;当b<0,图象与y轴的交点在x的下方.5、A【解析】

根据不等式的性质逐项分析即可.【详解】A.∵m<n,∴m﹣3<n﹣3,正确;B.∵m<n,∴2+m<2+n,故错误;C.∵m<n,∴,故错误;D.∵m<n,∴﹣3m>﹣3n,故错误;故选A.【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、B【解析】

根据不等式组的整数解有三个,确定出a的范围即可.【详解】∵不等式组的整数解有三个,∴这三个整数解为2、1、0,则﹣1<a≤0,故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集是解本题的关键.7、B【解析】

根据菱形的性质得到∠ACB=∠DCB=(180°-∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论,【详解】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB=∠DCB=(180°-∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB−∠ACE=27°,故选B.【点睛】本题主要考查了圆内接四边形的性质,菱形的性质,掌握这些性质是解题的关键.8、C【解析】

连接OB,根过B作BM⊥x轴于M,据勾股定理求出OB,根据矩形的性质得出AC=OB,即可得出答案.【详解】解:连接OB,过B作BM⊥x轴于M,

∵点B的坐标是(1,4),

∴OM=1,BM=4,由勾股定理得:OB=,

∵四边形OABC是矩形,

∴AC=OB,

∴AC=,

故选:C.【点睛】本题考查了点的坐标、矩形的性质、勾股定理等知识点,能根据矩形的性质得出AC=OB是解此题的关键.9、B【解析】

先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t=0时,S=0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键10、B【解析】试题分析:∵DE=BF,∴DF=BE。∵在Rt△DCF和Rt△BAE中,CD=AB,DF=BE,∴Rt△DCF≌Rt△BAE(HL)。∴FC=EA。故①正确。∵AE⊥BD于点E,CF⊥BD于点F,∴AE∥FC。∵FC=EA,∴四边形CFAE是平行四边形。∴EO=FO。故②正确。∵Rt△DCF≌Rt△BAE,∴∠CDF=∠ABE。∴CD∥AB。∵CD=AB,∴四边形ABCD是平行四边形。故③正确。由上可得:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE等。故④图中共有6对全等三角形错误。故正确的有3个。故选B。二、填空题(每小题3分,共24分)11、1【解析】

根据菱形的性质得出CD=AD,BC∥OA,根据D

(4,2)和反比例函数的图象经过点D求出k=8,C点的纵坐标是2×2=4,求出C的坐标,即可得出答案.【详解】∵四边形ABCO是菱形,∴CD=AD,BC∥OA,∵D

(4,2),反比例函数的图象经过点D,∴k=8,C点的纵坐标是2×2=4,∴,把y=4代入得:x=2,∴n=3−2=1,∴向左平移1个单位长度,反比例函数能过C点,故答案为:1.【点睛】本题主要考查了反比例函数图象上点的坐标特征,菱形的性质,坐标与图形变化-平移,数形结合思想是关键.12、1.【解析】

直接利用已知将原式变形进而得出x,y之间的关系,进而得出答案.【详解】解:∵=,∴2y=x+y,故y=x,则=1.故答案为:1.【点睛】本题考查了比例的性质,正确将原式变形是解题的关键.13、1【解析】

利用△ABC所在的矩形的面积减去四周三个直角三角形的面积列式计算即可得解.【详解】解:△ABC的面积=3×4-×4×2-×3×1-×1×3=12-4-1.1-1.1=1.故答案为1【点睛】本题考查了坐标与图形性质,主要是在平面直角坐标系中确定点的位置的方法和三角形的面积的求解.14、>【解析】

根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.【详解】∵y=1x图象在一、三象限,在每个象限内y随xA(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,∵﹣1<﹣1,∴y1>y1,故答案为:>.【点睛】考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.15、【解析】

由向量的平行四边形法则及相等向量的概念可得答案.【详解】解:因为:□ABCD,所以,,所以:.故答案为:.【点睛】本题考查向量的平行四边形法则,掌握向量的平行四边形法则是解题的关键.16、15或16或1【解析】试题分析:根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论.设新多边形的边数为n,则(n﹣2)•180°=2520°,解得n=16,①若截去一个角后边数增加1,则原多边形边数为1,②若截去一个角后边数不变,则原多边形边数为16,③若截去一个角后边数减少1,则原多边形边数为15,故原多边形的边数可以为15,16或1.故答案为15,16或1.考点:多边形内角和与外角和.17、2【解析】

根据对称轴垂直平分对应点连线,可得AF即是△ABC的高,再由中位线的性质求出BC,继而可得△ABC的面积.【详解】解:∵DE是△ABC的中位线,∴DE∥BC,BC=1DE=10cm;由折叠的性质可得:AF⊥DE,∴AF⊥BC,∴S△ABC=BC×AF=×10×8=2cm1.故答案为2.【点睛】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF是△ABC的高.18、(1,2)【解析】

先把函数解析式化为y=k(x-1)+2的形式,再令x=1求出y的值即可.【详解】解:函数可化为,当,即时,,该定点坐标为.故答案为:.【点睛】本题考查的是一次函数图象上点的坐标特点,把原函数的解析式化为y=k(x-1)+2的形式是解答此题的关键.三、解答题(共66分)19、(1)三角形画对(2)三角形面积是5高是【解析】试题分析:(1)根据勾股定理画出三角形即可;(2)求出三角形的面积,再由三角形的面积公式即可得出结论.试题解析:(1)如图,△ABC即为所求.(2),最长边的高为:.20、(1)30°;(2)海监船继续向正东方向航行没有触礁的危险,见解析【解析】

(1)在△ABC中,求出∠CAB、∠CBA的度数即可解决问题;

(2)作CD⊥AB于D.求出CD的值即可判定;【详解】解:(1)由题意得,∠CAB=30°,∠CBA=30°+90°=120°

∴∠ACB=180°-∠CBA-∠CAB=30°;

(2)由(1)可知∠ACB=∠CAB=30°,

∴AB=CB=30×=20(海里),∠CBD=60°,

过点C作CD⊥AB于点D,在Rt△CBD中,

CD=BCsin60°=10(海里)

10>15

∴海监船继续向正东方向航行是安全的.【点睛】本题考查了解直角三角形的应用-方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.21、(1),理由见解析;(2)①见解析;②,理由见解析.【解析】

(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,根据△ABC与△ABD的面积相等,证明AB与CD的位置关系;(2)连结MF,NE,设点M的坐标为(x1,y1),点N的坐标为(x2,y2),进一步证明S△EFM=S△EFN,结合(1)的结论即可得到MN∥EF;(3)连接FM、EN、MN,结合(2)的结论证明出MN∥EF,GH∥MN,于是证明出EF∥GH.【详解】(1)如图1,分别过点、作、,垂足分别为、,则,∴,∵且,,∴,∴四边形为平行四边形,∴;(2)①如图2,连接,,设点的坐标为,点的坐标为,∵点,在反比例函数的图像上,∴,.∵轴,轴,且点,在第一象限,∴,,,.∴,,∴,从而,由(1)中的结论可知:;②如图,理由:连接,,设点的坐标为,点的坐标为,由(2)①同理可得:,,∴,从而,由(1)中的结论可知:.【点睛】本题主要考查反比例函数的综合题,解答本题的关键是根据同底等高的两个三角形面积相等进行解答问题,此题难度不是很大,但是三问之间都有一定的联系.22、2.【解析】

变形后即可求出()2+()2=6,再根据完全平方公式求出即可.【详解】解:∵∴即()2+()2=6,∵1<x<2,∴>,∴====2.故答案为:2.【点睛】本题考查二次根式的混合运算和求值,完全平方公式等知识点,能灵活运用公式进行计算是解题关键.23、(1)m=2,n=-1;(2)见解析;(3)见解析.【解析】

(1)将n、m对应的x的值带入解析式即可;(2)根据表格中的点坐标再直角坐标系上标出,在连接各点即可;(3)根据函数的最值、对称性、增减性回答即可.【详解】解:(1)将带入函数中得:,将带入中得:;(2)如图所示:(3)(答案不唯一,合理即可)1、函数关于直线对称;2、函数在时取得最小值,最小值为-1【点睛】本题是新型函数题型,是中考必考题型,解题的关键是通过函数的基本性质以及图象的分析得到相关的值和特殊的函数性质.24、(1)y=2x+8;(2)m=;(3)-3<x<1【解析】

(1)先确定B的坐标,然后根据待定系数法求解析式;

(2)先求得C的坐标,然后根据题意求得平移后的直线的解析式,把C的坐标代入平移后的直线的解析式,即可求得M的值;

(3)找出直线y=-x落在y=kx+b的下方且在x轴上方的部分对应的x的取值范围即可.【详解】解:(1)∵正比例函数的图象经过点B(a,2),∴2=-a,解得,a=-3,∴B(-3,2),∵一次函数y=kx+b的图象经过点A(-2,4),B(-3,2),∴,解得,∴一次函数y=kx+b的解析式为y=2x+8;(2)∵一次函数y=2x+8的图象与x轴交于点C,∴C(-4,1),∵正比例函数y=-x的图象向下平移m(m>1)个单位长度后经过点C,∴平移后的函数的解析式为y=-x-m,∴1=-×(-4)-m,解得m=;(3)∵一次函y=kx+b与正比例函数y=-x的图象交于点B(-3,2),且一次函数y=2x+8的图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论