




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省哈尔滨市六十中学2024届八年级数学第二学期期末综合测试模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.如图,正方形的两边,分别在平面直角坐标系的轴、轴的正半轴上正方形与正方形是以的中点为中心的位似图形,已知,,则正方形与正方形的相似比是()A. B. C. D.2.学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是()A.0.1 B.0.15C.0.25 D.0.33.对于函数y=-x+1,下列结论正确的是()A.它的图象不经过第四象限 B.y的值随x的增大而增大C.它的图象必经过点(0,1) D.当x>2时,y>04.如图,△ABC是等边三角形,P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为()A.2 B.2 C. D.35.计算的结果是()A.2 B. C. D.-26.在2014年的体育中考中,某校6名学生的体育成绩统计如图,则这组数据的众数、中位数、方差依次是()A.18,18,1 B.18,17.5,3 C.18,18,3 D.18,17.5,17.下列图形既是轴对称图形,又是中心对称图形的是()A. B. C. D.8.如图,在△ABC中,点D、E、F分别是BC、AB、AC的中点,如果△ABC的周长为20,那么△DEF的周长是()A.20 B.15 C.10 D.59.小宇同学投擦10次实心球的成绩如表所示:成绩(m)11.811.91212.112.2频数22231由上表可知小宇同学投掷10次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1m C.12.1m,11.9m D.12.1m,12m10.下列运算正确的是()A. B.(m2)3=m5 C.a2•a3=a5 D.(x+y)2=x2+y2二、填空题(每小题3分,共24分)11.点A(2,1)在反比例函数y=的图象上,当1<x<4时,y的取值范围是.12.计算:(π﹣3)0﹣(﹣)﹣2=_____.13.如图,在边长为2的正方形ABCD中,点E是边AD中点,点F在边CD上,且FE⊥BE,设BD与EF交于点G,则△DEG的面积是___14.小明用S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.15.小强调查“每人每天的用水量”这一问题时,收集到80个数据,最大数据是70升,最小数据是42升,若取组距为4,则应分为_________组绘制频数分布表.16.先化简:,再对a选一个你喜欢的值代入,求代数式的值.17.如图(1),已知小正方形的面积为1,把它的各边延长一倍得新正方形;把正方形边长按原法延长一倍得到正方形如图(2);以此下去⋯⋯,则正方形的面积为_________________.18.约分___________.三、解答题(共66分)19.(10分)随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算?20.(6分)已知:一次函数y=(1﹣m)x+m﹣3(1)若一次函数的图象过原点,求实数m的值.(2)当一次函数的图象经过第二、三、四象限时,求实数m的取值范围.21.(6分)如图,已知在中,分别是的中点,连结.(1)求证:四边形是平行四边形;(2)若,求四边形的周长.22.(8分)已知方程组的解中,x为非正数,y为负数.(1)求a的取值范围;(2)化简|a﹣3|+|a+2|.23.(8分)某市举行知识大赛,A校、B校各派出5名选手组成代表队参加决赛,两校派出选手的决赛成绩如图所示.根据图示填写下表:平均数分中位数分众数分A校______85______B校85______100结合两校成绩的平均数和中位数,分析哪个学校的决赛成绩较好;计算两校决赛成绩的方差,并判断哪个学校代表队选手成绩较为稳定.24.(8分)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.25.(10分)如图,在平面直角坐标系中,直线:经过,分别交轴、直线、轴于点、、,已知.(1)求直线的解析式;(2)直线分别交直线于点、交直线于点,若点在点的右边,说明满足的条件.26.(10分)如图,平行四边形ABCD中,AE=CE.(1)用尺规或只用无刻度的直尺作出的角平分线,保留作图痕迹,不需要写作法.(2)设的角平分线交边AD于点F,连接CF,求证:四边形AECF为菱形.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
分别求出两正方形的对角线长度即可求解.【详解】由,得到C点(3,0)故AC=∵,正方形与正方形是以的中点为中心的位似图形,∴A’C’=AC-2AA’=∴正方形与正方形的相似比是A’C’:AC=1:3故选A.【点睛】此题主要考查多边形的相似比,解题的关键是熟知相似比的定义.2、D【解析】∵根据频率分布直方图知道绘画兴趣小组的频数为12,∴参加绘画兴趣小组的频率是12÷40=0.1.3、C【解析】
根据一次函数的图象及性质逐一进行判断即可.【详解】A,函数图象经过一、二、四象限,故该选项错误;B,y的值随x的增大而减小,故该选项错误;C,当时,,故该选项正确;D,当时,,故该选项错误;故选:C.【点睛】本题主要考查一次函数的图象及性质,掌握一次函数的图象及性质是解题的关键.4、C【解析】
解析:∵△ABC是等边三角形P是∠ABC的平分线,∴∠EBP=∠QBF=30°,∵BF=2,FQ⊥BP,∴BQ=BF•cos30°=2×=,∵FQ是BP的垂直平分线,∴BP=2BQ=2,在Rt△BEF中,∵∠EBP=30°,∴PE=BP=.故选C.5、A【解析】
根据分式的混合运算法则进行计算即可得出正确选项。【详解】解:=2故选:A【点睛】本题考查了分式的四则混合运算,熟练掌握运算法则是解本题的关键.6、A【解析】
根据众数、中位数的定义和方差公式分别进行解答即可.【详解】这组数据18出现的次数最多,出现了3次,则这组数据的众数是18;把这组数据从小到大排列,最中间两个数的平均数是(18+18)÷2=18,则中位数是18;这组数据的平均数是:(17×2+18×3+20)÷6=18,则方差是:[2×(17﹣18)2+3×(18﹣18)2+(20﹣18)2]=1.故选A.【点睛】本题考查了众数、中位数和方差,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一般地设n个数据,x1,x2,…xn的平均数为,则方差S2[(x1)2+(x2)2+…+(xn)2].7、D【解析】
直接利用轴对称图形和中心对称图形的概念求解.【详解】解:A、是轴对称图形,但不是中心对称图形,故此选项错误;
B、是轴对称图形,不是中心对称图形,故此选项错误;
C、是轴对称图形,不是中心对称图形,故此选项错误;
D、既是中心对称图形也是轴对称图形,故此选项正确.
故选:D.【点睛】此题主要考查了中心对称与轴对称的概念:轴对称的关键是寻找对称轴,两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180°后与原图重合.8、C【解析】试题分析::∵D、E分别是△ABC的边BC、AB的中点,∴DE=AC,同理EF=BC,DF=AB,∴C△DEF=DE+EF+DF=(AC+BC+AB)=×20=1.故选C.考点:三角形的中位线定理9、D【解析】
根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】解:由上表可知小宇同学投掷10次实心球成绩的众数是12.1m,中位数是=12(m),故选:D.【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.10、C【解析】A、=3,本选项错误;B、(m2)3=m6,本选项错误;C、a2•a3=a5,本选项正确;D、(x+y)2=x2+y2+2xy,本选项错误,故选C二、填空题(每小题3分,共24分)11、<y<1【解析】试题分析:将点A(1,1)代入反比例函数y=的解析式,求出k=1,从而得到反比例函数解析式,再根据反比例函数的性质,由反比例图像在第一象限内y随x的增大而减小,可根据当x=1时,y=1,当x=4时,y=,求出当1<x<4时,y的取值范围<y<1.考点:1、待定系数法求反比例函数解析式;1、反比例函数的性质12、-1.【解析】
根据零指数幂以及负整数指数幂的意义即可求出答案.【详解】解:原式=1﹣(﹣2)2=1﹣4=﹣1故答案为:﹣1.【点睛】本题考查了零指数幂以及负整数指数幂的运算,掌握基本的运算法则是解题的关键.13、【解析】
过点G作GM⊥AD于M,先证明△ABE∽△DEF,利用相似比计算出DF=,再利用正方形的性质判断△DGM为等腰直角三角形得到DM=MG,设DM=x,则MG=x,EM=1-x,然后证明△EMG∽△EDF,则利用相似比可计算出GM,再利用三角形面积公式计算S△DEG即可.【详解】解:过点G作GM⊥AD于M,如图,∵FE⊥BE,∴∠AEB+∠DEF=90°,而∠AEB+∠ABE=90°,∴∠ABE=∠DEF,而∠A=∠EDF=90°,∴△ABE∽△DEF,∴AB:DE=AE:DF,即2:1=1:DF,∴DF=,∵四边形ABCD为正方形,∴∠ADB=45°,∴△DGM为等腰直角三角形,∴DM=MG,设DM=x,则MG=x,EM=1-x,∵MG∥DF,∴△EMG∽△EDF,∴MG:DF=EM:ED,即x:=(1-x):1,解得x=,∴S△DEG=×1×=,故答案为.【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.熟练运用相似比计算线段的长.14、30【解析】
根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【详解】解:∵S2=[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30.故答案为30.【点睛】本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大.15、1【解析】
解:应分(70-42)÷4=7,
∵第一组的下限应低于最小变量值,最后一组的上限应高于最大变量值,∴应分1组.
故答案为:1.16、;3【解析】
原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a=3代入计算即可求出值.【详解】原式.∵且∴当a=3时,原式=【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17、1【解析】
根据条件计算出图(1)正方形A1B1C1D1的面积,同理求出正方形A2B2C2D2的面积,由此找出规律即可求出答案.【详解】图(1)中正方形ABCD的面积为1,把各边延长一倍后,每个小三角形的面积也为1,所以正方形A1B1C1D1的面积为5,图(2)中正方形A1B1C1D1的面积为5,把各边延长一倍后,每个小三角形的面积也为5,所以正方形A2B2C2D2的面积为52=25,由此可得正方形A5B5C5D5的面积为55=1.【点睛】本题考查图形规律问题,关键在于列出各图形面积找出规律.18、【解析】
根据分式的性质,分子分母同时扩大或缩小相同倍数时分式的值不变即可解题.【详解】=,(分子分母同时除以6abc).【点睛】本题考查了分式的变形和化简,属于简单题,熟悉分式的性质是解题关键.三、解答题(共66分)19、(1)y=0.8x+50;(2)见解析.【解析】分析:(1)普通会员分当0<x≤300时和当x>300时两种情况求解,根据总费用=购物费+运费写出解析式;VIP会员根据总费用=购物费+会员费写出解析式;(2)把0.9x与0.8x+50分三种情况比较大小,从而得出答案.详解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=0.9x;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=0.8x+50;(2)当0.9x<0.8x+50时,解得:x<500;当0.9x=0.8x+50时,x=500;当0.9x>0.8x+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.点睛:本题考查了一次函数的实际应用,一元一次不等式的实际应用及分类讨论的数学思想,分三种情况讨论,从而得出比较合算的购买方式是解答(2)的关键.20、(1)m=1;(2)1<m<1.【解析】
根据一次函数的相关性质进行作答.【详解】(1)∵一次函数图象过原点,∴,解得:m=1(2)∵一次函数的图象经过第二、三、四象限,∴,∴1<m<1.【点睛】本题考查了一次函数的相关性质,熟练掌握一次函数的相关性质是本题解题关键.21、(1)见解析;(2)四边形的周长为12.【解析】
(1)根据三角形的中位线的性质得到DF∥BC,EF∥AB,根据平行四边形的判定定理即可得到结论;
(2)根据直角三角形的性质得到DF=DB=DA=AB=3,推出四边形BEFD是菱形,于是得到结论.【详解】(1)∵分别是的中点,∴,∴四边形是平行四边形.(2)∵,是的中点,,∴.∴四边形是菱形.∵,∴四边形的周长为12.【点睛】本题考查了平行四边形的性质和判定,菱形的判定和性质,三角形的中位线的性质,熟练掌握平行四边形的性质是解题的关键.22、(1)﹣2<a≤3;(2)1【解析】
(1)先把a当作已知求出x、y的值,再根据x、y的取值范围得到关于a的一元一次不等式组,求出a的取值范围即可;(2)根据a的取值范围去掉绝对值符号,把代数式化简即可;【详解】解:(1)方程组解得:,∵x为非正数,y为负数;∴,解得:﹣2<a≤3;(2)∵﹣2<a≤3,即a﹣3≤0,a+2>0,∴原式=3﹣a+a+2=1.【点睛】本题考查的是解二元一次方程组、解一元一次不等式组、代数式的化简求值,熟练掌握并准确计算是解题的关键.23、;85;1.(2)A校成绩好些.校的方差,B校的方差.A校代表队选手成绩较为稳定.【解析】
(1)根据平均数、众数、中位数的意见,并结合图表即可得出答案(2)根据平均数和中位数的意见,进行对比即可得出结论(3)根据方差的公式,代入数进行运算即可得出结论【详解】解:;85;1.A校平均数=分A校的成绩:75.1.85.85.100,众数为85分B校的成绩:70.75.1.100.100,中位数为1分校成绩好些.因为两个队的平均数都相同,A校的中位数高,所以在平均数相同的情况下中位数高的A校成绩好些.校的方差,B校的方差.,因此,A校代表队选手成绩较为稳定.【点睛】本题主要考查了平均数、众数、中位数、方差的意义,要注意找中位数要把数据从小到大进行排序,位于最中间的数或者两个数的平均数为中位数,以及注意众数可能不止一个是解题的关键24、(1)见解析;(2)若AB=AC,则四边形AFBD是矩形.理由见解析【解析】
(1)先说明∠AFE=∠DCE,再证明△AEF和△DEC全等,最后根据全等三角形的性质和等量关系即可证明;(2)由(1)可得AF平行且等于BD,即四边形AFBD是平行四边形;再利用等腰三角形三线合一,可得AD⊥BC,即∠ADB=90°,即可证明四边形AFBD是矩形.【详解】(1)证明:∵AF∥BC,∴∠AFE=∠DCE,∵点E为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国内销售合同范本
- 《发布招聘信息》课件
- 2025年政府与社会资本合作项目合同特性解析
- 2025典范的工程建设项目合同
- 《工业革命历程》课件
- 2025合同范本下载2
- 塑胶模具设计培训大纲
- 北京版一年级上册Lesson 11教案
- 优化声乐合乐教学策略与实践方案
- 新城供水管网建设可行性分析报告
- 作风建设试题
- GB/T 6070-2007真空技术法兰尺寸
- GB/T 20041.21-2017电缆管理用导管系统第21部分:刚性导管系统的特殊要求
- GB/T 10007-2008硬质泡沫塑料剪切强度试验方法
- 临床医学之预后研究
- GA/T 1147-2014车辆驾驶人员血液酒精含量检验实验室规范
- 人教版2023年初中道法八年级下册知识点汇总(思维导图)
- 供电系统及安全用电
- 第六章社会总资本再生产和流通课件
- 热食类食品制售操作流程
- 社区卫生服务中心(站)财务、药品、固定资产、档案、信息管理制度
评论
0/150
提交评论