版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市枣林湾学校2024年数学八年级下册期末调研模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G2.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A.y=10x+30 B.y=40x C.y=10+30x D.y=20x3.如图,在正方形纸片ABCD中,E,F分别是AD,BC的中点,沿过点B的直线折叠,使点C落在EF上,落点为N,折痕交CD边于点M,BM与EF交于点P,再展开.则下列结论中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等边三角形.正确的有()A.1个 B.2个 C.3个 D.4个4.如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A.21,22 B.21,21.5 C.10,21 D.10,225.对于任意不相等的两个实数,,定义运算如下:.如果,那么的值为()A. B. C. D.6.下列图形都是由同样大小的▲按一定规律组成的,其中第1个图形中一共有6个▲:第2个图形中一共有9个▲;第3个图形中一共有12个▲;…授此规律排列,则第2019个图形中▲的个数为()A.2022 B.4040 C.6058 D.60607.下面是任意抛掷一枚质地均匀的正六面体骰子所得结果,其中发生的可能性很大的是()A.朝上的点数为 B.朝上的点数为C.朝上的点数为的倍数 D.朝上的点数不小于8.若是三角形的三边长,则式子的值(
).A.小于0 B.等于0 C.大于0 D.不能确定9.在平行四边形ABCD中,若∠B=135°,则∠D=()A.45° B.55° C.135° D.145°10.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学总成绩是90分,那么他的学期数学成绩()A.85分B.1.5分C.88分D.90分二、填空题(每小题3分,共24分)11.一次函数与的图象如图所示,则不等式kx+b<x+a的解集为_____.12.如图,平面直角坐标系中,A、B两点的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,点A1的坐标为(3,1),则点B1的坐标为_______.13.为方便市民出行,2019年北京地铁推出了电子定期票,电子定期票在使用有效期限内,支持单人不限次数乘坐北京轨道交通全路网(不含机场线)所有线路,电子定期票包括一日票、二日票、三日票、五日票及七日票共五个种类,价格如下表:种类一日票二日票三日票五日票七日票单价(元/张)2030407090某人需要连续6天不限次数乘坐地铁,若决定购买电子定期票,则总费用最低为____元.14.如图,将一张矩形纸片ABCD沿EF折叠,使点D与点B重合,点C落在C'的位置上,若∠BFE=67°,则∠ABE的度数为_____.15.如图,在中,,分别以两直角边,为边向外作正方形和正方形,为的中点,连接,,若,则图中阴影部分的面积为________.16.如图,点A在线段BG上,四边形ABCD和四边形DEFG都是正方形,面积分别是10和19,则△CDE的面积为_____________.17.如图,在平行四边形中,AD=2AB,平分交于点E,且,则平行四边形的周长是____.18.已知中,,角平分线BE、CF交于点O,则______.三、解答题(共66分)19.(10分)已知关于x的分式方程=1的解为负数,求k的取值范围.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(6分)上合组织峰会期间,甲、乙两家商场都将平时以同样价格出售相同的商品进行让利酬宾,其中甲商场所有商品按7折出售,乙商场对一次购物中超过200元后的价格部分打6折.(1)以x(单位:元)表示商品原价,y(单位:元)表示付款金额,分别就两家商场的让利方式写出y与x之间的函数解析式;(2)上合组织峰会期问如何选择这两家商场去购物更省钱?22.(8分)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②当DE平分∠CDB时,求证:AF=OA;(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.23.(8分)顶点都在格点上的多边形叫做格点多边形.以下的网格中,小正方形的边长为1.请按以下要求,画出一个格点多边形(要标注其它两个顶点字母).(1)在图甲中,画一个以为一边且面积为15的格点平行四边形;(2)在图乙中,画一个以为一边的格点矩形.24.(8分)如图,在▱ABCD中,E、F分别为边AD、BC的中点,对角线AC分别交BE,DF于点G、H.求证:AG=CH.25.(10分)如图,在平面直角坐标系中,▱ABCD,顶点A1,1,B5,1(1)点C的坐标是______,对角线AC与BD的交点E的坐标是______.(2)①过点A1,1的直线y=kx-3k+4的解析式是______②过点B5,1的直线y=kx-3k+4的解析式是______③判断①、②中两条直线的位置关系是______.(3)当直线y=kx-3k+4平分▱ABCD的面积时,k的值是______.(4)一次函数y=kx-2k+1的图像______(填“能”或“不能”)平分▱ABCD的面积.26.(10分)如图,在Rt△ABC中,∠B=90°,∠C=30°,AC=48,点D从点C出发沿CA方向以每秒4个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒2个单位长的速度向点B匀速运动,当其中一个点到达终点,另一个点也随之停止运动,设点D、E运动的时间是t秒(t>0),过点D作DF⊥BC于点F,连接DE、EF.(1)求证:AE=DF;(2)当四边形BFDE是矩形时,求t的值;(3)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.×
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据位似图形对应点连线过位似中心判断即可.【详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,
故选:B.【点睛】此题考查位似变换,解题关键是弄清位似中心的定义.2、A【解析】
根据师生的总费用,可得函数关系式.【详解】解:一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为y=10x+30,故选A.【点睛】本题考查了函数关系式,师生的总费用的等量关系是解题关键.3、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又点F为BC的中点,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正确;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正确;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等边三角形,故④正确;由题给条件,证不出CM=DM,故①错误.故正确的有②③④,共3个.故选C.4、A【解析】
根据众数和中位数的定义求解.【详解】解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是1,所以中位数是1.
故选A.【点睛】本题考查众数的定义:一组数据中出现次数最多的数据叫做众数.也考查了条形统计图和中位数.5、B【解析】
根据列式计算即可.【详解】∵,∴=.故选B.【点睛】本题考查了新定义运算及二次根式的性质,理解是解答本题的关键.6、D【解析】
仔细观察图形,找到图形中圆形个数的通项公式,然后代入n=100求解即可.【详解】解:观察图形得:
第1个图形有3+3×1=6个三角形,
第2个图形有3+3×2=9个三角形,
第3个图形有3+3×3=12个三角形,
…
第n个图形有3+3n=3(n+1)个三角形,
当n=2019时,3×(2019+1)=6060,
故选D.【点睛】本题考查了图形的变化类问题,解题的关键是仔细的读题并找到图形变化的规律,难度不大.7、D【解析】
分别求得各个选项中发生的可能性的大小,然后比较即可确定正确的选项.【详解】A、朝上点数为2的可能性为;B、朝上点数为7的可能性为0;C、朝上点数为3的倍数的可能性为;D、朝上点数不小于2的可能性为.故选D.【点睛】主要考查可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大,反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.8、A【解析】
先利用平方差公式进行因式分解,再利用三角形三边关系定理进行判断即可得解.【详解】解:=(a-b+c)(a-b-c)根据三角形两边之和大于第三边,两边之差小于第三边,(a-c+b)(a-c-b)<0故选A.【点睛】本题考查了多项式因式分解的应用,三角形三边关系的应用,熟练掌握三角形三条边的关系是解答本题的关键.9、C【解析】
根据平行四边形的性质解答即可.【详解】解:∵在平行四边形ABCD中,∠B=135°,∴∠D=∠B=135°,
故选:C.【点睛】本题考查了平行四边形的性质的知识,解答本题的关键是根据平行四边形的性质得出∠D=∠B.10、C【解析】
根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.【详解】小明这学期总评成绩=85×40%+90×60%=2.故选:C.【点睛】本题考查的是加权平均数的求法.解题的关键是根据期中、期末两次成绩所占的比例,列出算式,是一道基础题.二、填空题(每小题3分,共24分)11、x>1【解析】
利用函数图象,写出直线在直线下方所对应的自变量的范围即可.【详解】解:根据图象得,当x>1时,kx+b<x+a.故答案为x>1.【点睛】本题考查了一次函数与一元一次不等式:从函数图象的角度看,就是确定直线在直线下方所对应的所有的点的横坐标所构成的集合.数型结合是解题的关键.12、(1,2)【解析】
根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得线段AB向右平移1个单位,向上平移1个单位,进而可得a、b的值.【详解】解:∵A、B两点的坐标分别为(2,0)、(0,1),平移后A1(3,1),
∴线段AB向右平移1个单位,向上平移1个单位,
∴a=0+1=1,b=1+1=2,
点B1的坐标为(1,2),
故答案为(1,2),【点睛】本题考查坐标与图形的变化--平移,解题关键是掌握点的坐标的变化规律.13、1【解析】
根据题意算出5种方案的钱数,故可求解.【详解】解:连续6天不限次数乘坐地铁有5种方案方案①:买一日票6张,费用20×6=120(元)方案②:买二日票3张:30×3=90(元)方案③:买三日票2张:40×2=1(元)方案④:买一日票1张,五日票1张:20+70=120(元)方案⑤:买七日票1张:90元故方案③费用最低:40×2=1(元)故答案为1.【点睛】此题主要考查有理数运算的应用,解题的关键是根据题意写出各方案的费用.14、44°【解析】
利用平行线的性质以及三角形的内角和定理即可解决问题.【详解】∵AD∥BC,∴∠DEF=∠BFE=67°;又∵∠BEF=∠DEF=67°,∴∠AEB=180°﹣∠BEF﹣∠DEF=180°﹣67°﹣67°=46°,∵∠A=90°,∴∠ABE=90°﹣46°=44°,故答案为44°.【点睛】本题考查平行线的性质,解题的关键是熟练掌握作为基本知识.15、25【解析】
首先连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,然后根据直角三角形斜边中线定理,即可得出,,又由正方形的性质,得出AC=CD,BC=CF,阴影部分面积即为△CDO和△CFO之和,经过等量转换,即可得解.【详解】连接OC,过点O作OM⊥BC,ON⊥AC,分别交BC、AC于点M、N,如图所示∵,,点O为AB的中点,∴,又∵正方形和正方形,∴AC=CD,BC=CF∴【点睛】此题主要考查勾股定理、直角三角形中位线定理以及正方形的性质,熟练掌握,即可解题.16、【解析】
根据三角形的面积公式,已知边CD的长,求出CD边上的高即可.过E作EH⊥CD,易证△ADG与△HDE全等,求得EH,进而求△CDE的面积.【详解】过E作EH⊥CD于点H.∵∠ADG+∠GDH=∠EDH+∠GDH,∴∠ADG=∠EDH.又∵DG=DE,∠DAG=∠DHE.∴△ADG≌△HDE.∴HE=AG.∵四边形ABCD和四边形DEFG都是正方形,面积分别是5和1.即AD2=5,DG2=1.∴在直角△ADG中,AG=,∴EH=AG=2.∴△CDE的面积为CD·EH=××2=.故答案为.【点睛】考查了勾股定理、全等三角形的判定与性质、正方形的性质,正确作出辅助线,构造全等三角形是解决本题的关键.17、18【解析】
利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB,再求出ABCD的周长【详解】∵CE平分∠BCD交AD边于点E,∴.∠ECD=∠ECB∵在平行四边形ABCD中、AD∥BC,AB=CD,AD=BC∴∠DEC=∠ECB,∴∠DEC=∠DCE∴DE=DC∵AD=2AB∴AD=2CD∴AE=DE=AB=3∴AD=6∴四边形ABCD的周长为:2×(3+6)=18.故答案为:18.【点睛】此题考查平行四边形的性质,解题关键在于利用平行四边形的对边相等且互相平行18、【解析】解:∵∠A=90°,∴∠ABC+∠ACB=90°,∵角平分线BE、CF交于点O,∴∠OBC+∠OCB=45°,∴∠BOC=180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.三、解答题(共66分)19、k>且k≠1【解析】
首先根据解分式方程的步骤,求出关于x的分式方程=1的解,然后根据分式方程的解为负数,求出k的取值范围即可.【详解】解:去分母,得(x+k)(x-1)-k(x+1)=x2-1,去括号,得x2-x+kx-k-kx-k=x2-1,移项、合并同类项,得x=1-2k,根据题意,得1-2k<0且1-2k≠1,1-2k≠-1解得k>且k≠1,∴k的取值范围是k>且k≠1.【点睛】此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.20、甲车的速度是60千米/时,乙车的速度是90千米/时.【解析】
根据题意,设出甲、乙的速度,然后根据题目中两车相遇时时间相同,列出方程,解方程即可.【详解】设甲车的速度是x千米/时,乙车的速度为(x+30)千米/时,,解得,x=60,经检验,x=60是原方程的解.则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.21、(1)甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【解析】
(1)根据题意可以分别求出甲乙两商场中y与x的函数关系式;(2)根据(1)中的函数关系式和题意可以解答本题.【详解】.解:(1)由题意可得,甲商场:y=0.7x,乙商场:当0≤x≤200时,y=x,当x>200时,y=200+0.6(x﹣200)=0.6x+80;(2)令0.7x=0.6x+80,得x=800,∴当x<800时,在甲商场购买比较省钱,当x=800时,在甲乙两商场购买花钱一样,当x>800时,在乙商场购买省钱.【点睛】本题考查一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.22、(1);(2)(3)见解析【解析】试题分析:(1)利用相似三角形的性质求得与的比值,依据和同高,则面积的比就是与的比值,据此即可求解;
(2)利用三角形的外角和定理证得可以证得,在直角中,利用勾股定理可以证得;
(3)连接易证是的中位线,然后根据是等腰直角三角形,易证利用相似三角形的对应边的比相等即可.试题解析:(1)∵,∴∵四边形ABCD是正方形,∴△CEF∽△ADF,∴,∴,∴;(2)证明:∵DE平分∠CDB,∴∠ODF=∠CDF,∵AC、BD是正方形ABCD的对角线.而∠ADF=∠ADO+∠ODF,∠AFD=∠FCD+∠CDF,∴∠ADF=∠AFD,∴AD=AF,在中,根据勾股定理得:AD==OA,(3)证明:连接OE.∵点O是正方形ABCD的对角线AC、BD的交点,点O是BD的中点.又∵点E是BC的中点,∴OE是△BCD的中位线,∴=,∴..在中,∵∠GCF=45°.∴CG=GF,又∵CD=BC,∴,∴=.∴CG=BG.23、(1)见解析;(2)见解析.【解析】
(1)利用平行四边形及网格的特点即可解决问题;(2)根据网格的特点构造直角即可求解.【详解】如图:(1)四边形ABCD为所求;(2)四边形ABEF为所求.【点睛】本题考查网格−应用与设计,勾股定理,平行四边形的判定和性质,矩形的判定等知识,解题的关键是学会利用数形结合的思想解决问题.24、证明见解析.【解析】
根据平行四边形的性质得到AD∥BC,得出∠ADF=∠CFH,∠EAG=∠FCH,证出四边形BFDE是平行四边形,得出BE∥DF,证出∠AEG=∠CFH,由ASA证明△AEG≌△CFH,得出对应边相等即可.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADF=∠CFH,∠EAG=∠FCH,∵E、F分别为AD、BC边的中点,∴AE=DE=AD,CF=BF=BC,∴DE∥BF,DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,∴∠AEG=∠ADF,∴∠AEG=∠CFH,在△AEG和△CFH中,∵∠EAG=∠FCH,AE=CF,∠AEG=∠CFH,∴△AEG≌△CFH(ASA),∴AG=CH.25、(1)3,-1;(2)①y=32x-12;②y=-32x+172;【解析】
(1)根据平行四边形的性质以及A、B两点的坐标可得CD∥AB∥x轴,CD=AB=1,再利用平移的性质得出点C的坐标;根据平行四边形的对角线互相平分得出E是BD的中点,再利用线段的中点坐标公式求出点E的坐标;(2)①将点A(1,1)代入y=kx-3k+1,求出k的值即可;②将点B(5,1)代入y=kx-3k+1,求出k的值即可;③将两直线的解析式联立组成方程组:y=32x-(3)当直线y=kx-3k+1平分▱ABCD的面积时,直线y=kx-3k+1经过▱ABCD对角线的交点E(2,0),将E点坐标代入y=kx-3k+1,求出k的值即可;(1)将x=2代入y=kx-2k+1,求出y=1≠0,即直线y=kx-2k+1不经过▱ABCD对角线的交点E(2,0),即可判断一次函数y=kx-2k+1的图象不能平分▱ABCD的面积.【详解】解:(1)∵四边形ABCD是平行四边形,A(1,1),B(5,1),∴CD∥AB∥x轴,CD=AB=1,∵D(-1,-1),∴点C的坐标是(-1+1,-1),即(3,-1),∵E是对角线AC与BD的交点,∴E是BD的中点,∵B(5,1),D(-1,-1),∴点E的坐标是(2,0).故答案为(3,-1),(2,0);(2)①将点A(1,1)代入y=kx
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《神经内镜与神经导航辅助显微镜下经鼻蝶入路垂体瘤切除术的临床疗效对比》
- 《行政法上的终身禁业立法完善研究》
- 《未成年人订立电子合同问题研究》
- 《SIP-IMS终端中Presence业务的设计与实现》
- 2024年建筑装饰材料进口出口购销合同
- 《MicroRNA调控上皮-间质转化的机制及其对鼻咽癌细胞侵袭和迁移的影响》
- 《ASLNC12089作为ceRNA维持HIF-1α-HIF1AN相对平衡抑制非小细胞肺癌进展的作用机制》
- 《活性炭纤维改性及对As(Ⅴ)的吸附研究》
- 2024年影视作品联合出品与投资合同
- 专题05-2022年北京高考数学满分限时题集
- 社会工作方法 个案工作 个案所需表格
- 2024届中国一汽全球校园招聘高频500题难、易错点模拟试题附带答案详解
- 2024大连机场招聘109人高频500题难、易错点模拟试题附带答案详解
- 2024新教材高中政治 第二单元 经济发展与社会进步 第三课 我国的经济发展 3.1 坚持新发展理念教学设计 部编版必修2
- JGJ46-2005施工现场临时用电安全技术规范专题理论考试试题
- 财务管理委托代理会计服务 投标文件(技术方案)
- 2024年全国高考Ⅰ卷英语试题及答案
- 期刊编辑的学术期刊编辑规范考核试卷
- T-CCSAS014-2022《化工企业承包商安全管理指南》
- 电梯安全总监和安全员的任命文件
- SL-T+62-2020水工建筑物水泥灌浆施工技术规范
评论
0/150
提交评论