甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题含解析_第1页
甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题含解析_第2页
甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题含解析_第3页
甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题含解析_第4页
甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省白银市平川区2024年数学八年级下册期末教学质量检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,菱形ABCD中,∠BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE,分别交AC、AD于点F、G,连接OG,则下列结论:①OG=AB;②图中与△EGD

全等的三角形共有5个;③以点A、B、D、E为项点的四边形是菱形;④

S四边形ODGF=

S△ABF.其中正确的结论是()A.①③ B.①③④ C.①②③ D.②②④2.已知,那么下列式子中一定成立的是()A. B. C. D.3.梅凯种子公司以一定价格销售“黄金1号”玉米种子,如果一次购买10千克以上(不含l0千克)的种子,超过l0千克的那部分种子的价格将打折,并依此得到付款金额y(单位:元)与一次购买种子数量x(单位:千克)之间的函数关系如图所示.下列四种说法:①一次购买种子数量不超过l0千克时,销售价格为5元/千克;②一次购买30千克种子时,付款金额为100元;③一次购买10千克以上种子时,超过l0千克的那部分种子的价格打五折:④一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱.其中正确的个数是A.1个 B.2个 C.3个 D.4个4.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为()A. B. C. D.5.如果将分式中的、都扩大2倍,那么分式的值()A.不变 B.扩大2倍 C.缩小2倍 D.扩大4倍6.如图,把一个边长为1的正方形放在数轴E,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数为().A.2 B.1.4 C.3 D.1.77.在平面直角坐标系中,点P(-20,a)与点Q(b,13)关于原点对称,则a+b的值为()A.33B.-33C.-7D.78.一次函数y=kx+b,当k>0,b<0时,它的图象是()A. B. C. D.9.如图,直线与交于点,则不等式的解集为()A. B. C. D.10.如图,△ABC中,∠C=90°,E、F分别是AC、BC上两点,AE=8,BF=6,点P、Q、D分别是AF、BE、AB的中点,则PQ的长为()A.4 B.5 C.6 D.8二、填空题(每小题3分,共24分)11.如图,已知一次函数的图象为直线,则关于x的方程的解______.12.某市出租车的收费标准如下:起步价5元,即千米以内(含千米)收费元,超过千米的部分,每千米收费元.(不足千米按千米计算)求车费(元)与行程(千米)的关系式________.13.已知菱形的边长为6cm,一个内角为60°,则菱形的面积为______cm1.14.如图,在矩形ABCD中,AD=9cm,AB=3cm,将其折叠,使点D与点B重合,则重叠部分(△BEF)的面积为_________cm2.15.菱形的周长为8cm,一条对角线长2cm,则另一条对角线长为cm.。16.(2016浙江省衢州市)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=____________.17.统计学校排球队队员的年龄,发现有岁、岁、岁、岁等四种年龄,统计结果如下表,则根据表中信息可以判断表中信息可以判断该排球队队员的平均年龄是__________岁.年龄/岁人数/个18.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D的坐标;(3)在x轴上找一点M,使△MDB的周长最小,请求出M点的坐标.20.(6分)选择合适的点,在如图所示的坐标系中描点画出函数的图象,并指出当为何值时,的值大于1.21.(6分)某学校八年级七班学生要去实验基地进行实践活动,估计乘车人数为10人到40人之间,现在欲租甲、乙两家旅行社的车辆,已知甲、乙两家旅行社的服务质量相同,且报价都是每人120元,经过协商,甲旅行社表示可给予每位学生七五折优惠;乙旅行社表示可先免去一位同学的车费,然后给予其他同学八折优惠.(1)若用x表示乘车人数,请用x表示选择甲、乙旅行社的费用y甲与y乙;(2)请你帮助学校选择哪一家旅行社费用合算?22.(8分)为了解饮料自动售货机的销售情况,有关部门从北京市所有的饮料自动售货机中随机抽取20台进行了抽样调查,记录下某一天各自的销售情况单位:元,并对销售金额进行分组,整理成如下统计表:28,8,18,63,15,30,70,42,36,47,25,58,64,58,55,41,58,65,72,30销售金额x划记____________频数35____________请将表格补充完整;用频数分布直方图将20台自动售货机的销售情况表示出来,并在图中标明相应数据;根据绘制的频数分布直方图,你能获取哪些信息?至少写出两条不同类型信息23.(8分)已知直线与轴,轴分别交于点,将对折,使点的对称点落在直线上,折痕交轴于点.(1)求点的坐标;(2)若已知第四象限内的点,在直线上是否存在点,使得四边形为平行四边形?若存在,求出点的坐标;若不存在,说明理由;(3)设经过点且与轴垂直的直线与直线的交点为为线段上一点,求的取值范围.24.(8分)如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,BD=4cm.求AC的长.25.(10分)如图,在四边形ABCD中,BD垂直平分AC,垂足为F,分别过点B作直线BE∥AD,过点A作直线EA⊥AC于点A,两直线交于点E.(1)求证:四边形AEBD是平行四边形;(2)如果∠ABE=∠ABD=60°,AD=2,求AC的长.26.(10分)如图1,BD是矩形ABCD的对角线,,.将沿射线BD方向平移到的位置,连接,,,,如图1.(1)求证:四边形是平行四边形;(1)当运动到什么位置时,四边形是菱形,请说明理由;(3)在(1)的条件下,将四边形沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.

参考答案一、选择题(每小题3分,共30分)1、A【解析】

由AAS证明△ABG≌△DEG,得出AG=DG,证出OG是△ACD的中位线,得出OG=CD=AB,①正确;先证明四边形ABDE是平行四边形,证出△ABD、△BCD是等边三角形,得出AB=BD=AD,因此OD=AG,得出四边形ABDE是菱形,③正确;由菱形的性质得得出△ABG≌△BDG≌△DEG,由SAS证明△ABG≌△DCO,得出△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,得出②不正确;证出OG是△ABD的中位线,得出OG//AB,OG=AB,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S四边形ODGF=S△ABF;④不正确;即可得出结果.【详解】解:四边形ABCD是菱形,在△ABG和△DEG中,∴△ABG≌△DEG(AAS),∴.AG=DG,∴OG是△ACD的中位线,∴OG=CD=AB,①正确;∵AB//CE,AB=DE,∴四边形ABDE是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD、△BCD是等边三角形,∴AB=BD=AD,∠ODC=60°,∴OD=AG,四边形ABDE是菱形,③正确;∴AD⊥BE,由菱形的性质得:△ABG≌△BDG≌△DEG,在△ABG和△DCO中,∴△ABG≌△DCO∴△ABO≌△BCO≌△CDO≌△AOD≌△ABG≌△BDG≌△DEG,则②不正确。∵OB=OD,AG=DG,∴OG是△ABD的中位线,∴OG∥AB,OG=AB,∴△GOD∽△ABD,△ABF∽△OGF,∴△GOD的面积=△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,∴△AFG的面积=△OGF的面积的2倍,又∵△GOD的面积=△AOG的面积=△BOG的面积,∴S四边形ODGF=S△ABF;④不正确;故答案为:A.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,难度较大.2、D【解析】

根据比例的性质对各个选项进行判断即可.【详解】A.∵,∴3x=2y,∴不成立,故A不正确;B.∵,∴3x=2y,∴不成立,故B不正确;C.∵,∴y,∴不成立,故C不正确;D.∵,∴,∴成立,故D正确;故选D.【点睛】本题考查的是比例的性质,掌握内项之积等于外项之积及更比性质是解题的关键.更比性质:在一个比例里,更换第一个比的后项与第二个比的前项的位置后,仍成比例,或者更换第一个比的前项与第二个比的后项的位置后,仍成比例,这叫做比例中的更比定理.对于实数a,b,c,d,且有b≠0,d≠0,如果,则有.3、D【解析】①由图可知,购买10千克种子需要50元,由此求出一次购买种子数量不超过10千克时的销售价格;②由图可知,超过10千克以后,超过的那部分种子的单价降低,而由购买50千克比购买10千克种子多付100元,求出超过10千克以后,超过的那部分种子的单价,再计算出一次购买30千克种子时的付款金额;③根据一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以可以求出打的折数;④先求出一次购买40千克种子的付款金额为125元,再求出分两次购买且每次购买20千克种子的付款金额为150元,然后用150减去125,即可求出一次购买40千克种子比分两次购买且每次购买20千克种子少花的钱数.解:①由图可知,一次购买种子数量不超过10千克时,销售价格为:50÷10=5元/千克,正确;②由图可知,超过10千克的那部分种子的价格为:(150-50)÷(50-10)=2.5元/千克,所以,一次购买30千克种子时,付款金额为:50+2.5×(30-10)=100元,正确;③由于一次购买10千克以上种子时,超过10千克的那部分种子的价格为2.5元/千克,而2.5÷5=0.5,所以打五折,正确;④由于一次购买40千克种子需要:50+2.5×(40-10)=125元,分两次购买且每次购买20千克种子需要:2×[50+2.5×(20-10)]=150元,而150-125=25元,所以一次购买40千克种子比分两次购买且每次购买20千克种子少花25元钱,正确.故选D.4、C【解析】

根据函数的性质判断系数k>1,然后依次把每个点的坐标代入函数解析式,求出k的值,由此得到结论.【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,∴k>1.A.把点(﹣5,3)代入y=kx﹣1得到:k1,不符合题意;B.把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<1,不符合题意;C.把点(2,2)代入y=kx﹣1得到:k1,符合题意;D.把点(5,﹣1)代入y=kx﹣1得到:k=1,不符合题意.故选C.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>1是解题的关键.5、A【解析】

根据分式的性质,可得答案.【详解】解:由题意,得故选:A.【点睛】本题考查了分式的性质,利用分式的性质是解题关键.6、B【解析】

根据勾股定理求出OA的长,根据实数与数轴的知识解答.【详解】解:则点A对应的数是:1.4故选:B【点睛】本题考查的是勾股定理的应用,掌握任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.7、D【解析】试题分析:关于原点对称的两个点,横坐标和纵坐标分别互为相反数.根据性质可得:a=-13,b=20,则a+b=-13+20=1.考点:原点对称8、C【解析】试题解析:根据题意,有k>0,b<0,则其图象过一、三、四象限;故选C.9、D【解析】

观察函数图象得到,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,由此得到不等式x+3>mx+n的解集.【详解】解:∵直线L1:y=x+3与L2:y=mx+n交于点A(-1,b),

从图象可以看出,当x>-1时,直线L1:y=x+3的图象都在L2:y=mx+n的图象的上方,

∴不等式x+3>mx+n的解集为:x>-1,

故选:D.【点睛】本题考查一次函数与一元一次不等式的关系,关键是从函数图象中找出正确信息.10、B【解析】

利用三角形中位线定理即可作答.【详解】∵点P、Q、D分别是AF、BE、AB的中点∴∴DQ∥AE,PD∥BF∵∠C=90°∴AE⊥BF∴DQ⊥PD∴∠PDQ=90°∴.故选B.【点睛】本题考查的知识点是勾股定理的运用,解题关键是证得∠PDQ=90°.二、填空题(每小题3分,共24分)11、1.【解析】

解:根据图象可得,一次函数y=ax+b的图象经过(1,1)点,因此关于x的方程ax+b=1的解x=1.故答案是1.【点睛】本题考查一次函数与一元一次方程,利用数形结合思想解题是关键.12、【解析】

本题是一道分段函数,当和是由收费与路程之间的关系就可以求出结论.【详解】由题意,得

当时,

当时,

,∴,故答案为:.【点睛】本题考查了分段函数的运用,解答时求出函数的解析式是关键.13、18【解析】由题意可知菱形的较短的对角线与菱形的一组边组成一个等边三角形,根据勾股定理可求得另一条对角线的长,再根据菱形的面积等于两对角线乘积的一半即可求得其面积.解:因为菱形的一个内角是110°,则相邻的内角为60°从而得到较短的对角线与菱形的一组邻边构成一个等边三角形,即较短的对角线为6cm,根据勾股定理可求得较长的对角线的长为6cm,则这个菱形的面积=×6×6=18cm1,故答案为18.14、7.1cm2【解析】已知四边形ABCD是矩形根据矩形的性质可得BC=DC,∠BCF=∠DCF=90°,又知折叠使点D和点B重合,根据折叠的性质可得C′F=CF,在RT△BCF中,根据勾股定理可得BC2+CF2=BF2,即32+(9-BF)2=BF2,解得BF=1,所以△BEF的面积=BF×AB=×1×3=7.1.点睛:本题考查了翻折变换的性质,矩形的性质,勾股定理,熟记翻折前后两个图形能够重合找出相等的线段、相等的角是解题的关键.15、【解析】解:先根据菱形的四条边长度相等求出边长,再由菱形的对角线互相垂直平分根据勾股定理即可求出另一条对角线的长。16、4或﹣1.【解析】

根据题意画图如下:以O,A,B,C为顶点的四边形是平行四边形,则C(4,1)或(﹣1,1),则x=4或﹣1;故答案为4或﹣1.17、【解析】

计算出学校排球队队员的总年龄再除以总人数即可.【详解】解:(岁)所以该排球队队员的平均年龄是14岁.故答案为:14【点睛】本题考查了平均数,掌握求平均数的方法是解题的关键.18、18【解析】分析:利用菱形的性质结合勾股定理得出AB的长,进而得出答案.详解:∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB=,∴△ABC的周长=AB+BC+AC=5+5+8=18.故答案为18点睛:本题考查了菱形面积的计算,考查了勾股定理在直角三角形中的运用,考查了菱形各边长相等的性质,本题中根据勾股定理计算AB的长是解题的关键.三、解答题(共66分)19、(1);(2)D(-6,4);(3)M(-2,0)【解析】

(1)由题意将y=0和x=0分别代入即可求出点A、B的坐标,进而求出边AB的长;(2)根据题意作DH⊥轴于H,并利用全等三角形的判定与性质求得△DAH≌△ABO,进而得出DH和OH的值即可;(3)根据题意作D点关于轴的对称点为E,并连接BE交x轴于点M,△MDB的周长为,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,解出直线BE的解析式即可得到M点的坐标.【详解】解:(1)由题意直线y=x+2与x轴、y轴分别交于A、B两点,将y=0和x=0分别代入即可求出点A、B的坐标为:A(-4,0),B(0,2),所以AB=.(2)作DH⊥轴于H,由于∠DHA=∠BAD=90°,∠DAH+∠BAO=90°,∠BAO+∠ABO=90°,∴∠DAH=∠ABO,又DA=AB,∴△DAH≌△ABO(AAS),则DH=OA=4,AH=OB=2,OH=4+2=6,∵点D的坐标在第二象限,∴D(-6,4).(3)作D点关于轴的对称点为E,并连接BE交x轴于点M,根据轴对称的性质可知,E(-6,-4),△MDB的周长为:,有为定值,只需满足的值最小即可,将进行转化,根据两点间线段最短即可知道此时的M即为所求,利用待定系数法求得直线BE的解析式为,直线与轴的交点坐标为(-2,0),故M(-2,0).【点睛】本题考查一次函数与正方形,涉及的知识有待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握相关性质及定理是解答本题的关键.20、图象见详解;时,.【解析】

任意选取两个的值,代入后求得对应值,在网格上对应标出,连接,可得所需直线,根据已画图象可得时,的取值范围.【详解】在函数中,当时,,当时,,描点,画图如下:由图可知,时,.【点睛】本题考查了一次函数图象的画法,及根据图象求符合条件的的取值范围的问题,熟练掌握相关技巧是解题的关键.21、(1)y甲=0.75×120x=90x,y乙=0.8×120(x-1)=96x-96;(2)当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;当人数正好是16人时,选择甲、乙旅行社一样.【解析】

(1)设共有x人由题意得:甲旅行社的花费=120×人数×七五折;乙旅行社的花费=120×(人数-1)×八折;

(2)分三种情况:①y甲=y乙时,②y甲>y乙时,③y甲<y乙时,分别列出方程或不等式进行计算即可.【详解】(1)设共有x人,则

y甲=0.75×120x=90x,

y乙=0.8×120(x-1)=96x-96;(2)由y甲=y乙得,90x=96x-96,

解得:x=16,

y甲>y乙得,90x>96x-96,

解得:x<16,

y甲<y乙得,90x<96x-96,

解得:x>16,

所以,当人数为10-16人时,选择乙旅行社合算;当人数16-40人时,选择甲旅行社合算;

当人数正好是16人时,选择甲、乙旅行社一样.【点睛】此题考查一元一次不等式和方程的应用,关键是正确理解题意,找出题目中不等关系,再列出不等式.22、补全表格见解析;画图见解析;见解析.【解析】

(1)根据已知数据补全即可;(2)根据频数分布直方图的制作可得;(3)由频数分布直方图得出合理信息即可.【详解】补全表格如下:销售金额x划记频数3575频数分布直方图如下:销售额在的饮料自动售货机最多,有7台;销售额在的饮料自动售货机最少,只有3台;销售额在和的饮料自动售货机的数量相同.【点睛】本题考查了统计表、条形统计图的应用,关键是正确从统计表中得到正确的信息,条形统计图表示的是事物的具体数量.23、(1)C(3,0);(2)不存在;(3)0≤|QA−QO|≤1.【解析】

(1)由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,即可求解;(2)当四边形OPAD为平行四边形时,根据OA的中点即为PD的中点即可求解;(3)当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,即可求解.【详解】解:(1)连接CE,则CE⊥AB,与x轴,y轴分别相交于点A,B,则点A、B的坐标分别为:(8,0)、(0,6),则AB=10,设:OC=a,则CE=a,BE=OB=6,AE=10−6=1,CA=8−a,由勾股定理得:CA2=CE2+AE2,即(8−a)2=a2+12,解得a=3,故点C(3,0);(2)不存在,理由:将点B、C的坐标代入一次函数表达式y=kx+b并解得:直线BC的表达式为:y=−2x+6,设点P(m,n),当四边形OPAD为平行四边形时,OA的中点即为PD的中点,即:m+=8,n−=0,解得:m=,n=,当x=时,y=−2x+6=1,故点P不在直线BC上,即在直线BC上不存在点P,使得四边形OPAD为平行四边形;(3)当x=时,y=−2x+6=−5,故点F(,−5),当点Q为AO的垂直平分线与直线BC的交点时,QO=QA,则|QA−QO|=0,当点Q在点B处时,|QA−QO|有最大值,此时:点A(8,0)、点O(0,0)、点Q(0,6),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论